

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

NOV 2 0 2015

REPLY TO THE ATTENTION OF:

Ronald Coupar, Environmental Manager Behr Iron & Metal 1100 Seminary Street Rockford, Ilinois 61104

RE: Approval for Cleanup and Disposal of Polychlorinated Biphenyls (PCB)

Dear Mr. Coupar:

The U.S. Environmental Protection Agency, Region 5, has reviewed your requests for Self-Implementing PCB Disposal and Risk-Based Characterization approval under 40 C.F.R. § 761.61(a) and 761.61(c). We reviewed your original submittal dated October 22, 2015 and subsequent submittal dated November 18, 2015 which was provided in response to Agency comments. You submitted the notifications and applications in accordance with Section 6 of the Toxic Substances Control Act, 15 U.S.C. § 2605, and the Federal PCB regulations at 40 C.F.R. § 761.61(a) and 761.61(c).

The cleanup plan you submitted will address PCB impacted materials discovered as a result of a 2010 renovation project within the Behr Peoria Facility. As part of the renovation a significant volume of fill material in a 100 x 40 x 9 foot concrete-lined former building foundation was discovered. The fill material was excavated, stockpiled on a concrete pad, and characterized per a work plan approved by EPA on December 17, 2014. The Work Plan describes the loading of the stockpiled soil onto trucks and transporting the soil for disposal at appropriate landfills. Once the soil/fill is removed and the concrete pad is decontaminated, verification sampling of the concrete pad will be performed to determine compliance with remediation objectives.

The verification sampling procedures specified in the November 18, 2015 submittal is different from 40 C.F.R. Part 761, Subpart O. However, 40 C.F.R. 761.61(a) stipulates that the Regional Administrator may authorize more practical procedures through 761.61(c). We have determined that use of the verification sampling and potential capping procedures identified will not present an unreasonable risk to human health or the environment.

We have determined that the remainder of the requirements, certifications, and notifications satisfy the requirements under 40 C.F.R. § 761.61(a) for Self-Implementing cleanup of PCB remediation waste and these plans are approved. It is understood that Behr may also need to institute a deed restriction for the site at the completion of the site-wide RCRA Corrective Action activities which will also satisfy the requirements of 40 C.F.R. 761.61(a)(8) for this project. This letter does not relieve Behr from compliance with any other federal, state or local regulation

and does not preclude EPA from initiating any enforcement action, including an action seeking civil penalties for any violation of federal regulations. In addition, please note that if you wish to make any changes to your notification (including changes in the project schedule), then you must submit your proposal to Jennifer Dodds, of my staff, in writing at least 14 calendar days prior to the proposed implementation of the change. If you have any questions, please contact her by e-mail at dodds.jennifer@epa.gov or by telephone at (312) 886-1484.

Sincerely,

Margaret M. Guerriero

Director

Land and Chemicals Division

October 22, 2015

Reference No. 11103179

VIA EMAIL AND

CERTIFIED MAIL

Susan Hedman Region 5 Regional Administrator c/o Mirtha Cápiro U.S. Environmental Protection Agency 77 W. Jackson Boulevard, Mail Code LR-8J Chicago, Illinois 60604-3507

Lisa Bonnett, Director c/o Todd Gross Illinois Environmental Protection Agency Bureau of Land, Division of Remediation Management Remedial Project Management Section 1021 North Grand Avenue East Post Office Box 19276 Springfield, IL 62794-9276

Wil Hayes
Director of Environmental Health
Peoria City/County Health Department
2116 N. Sheridan Road, Peoria, IL 61604

Dear Sirs:

Re: Notification and Request for Approval of a Work Plan for Self-Implementing On-Site Cleanup and Disposal of PCB Remediation Waste Behr Peoria, Inc. Facility, 2424 West Clark Street, Peoria, Peoria County, Illinois LPC#: 1430655140 and USEPA ID: ILD065238503

The U.S. Environmental Protection Agency (U.S. EPA), Illinois Environmental Protection Agency (Illinois EPA), and Peoria City/County Health Department are hereby notified of a planned self-implementing cleanup and disposal of polychlorinated biphenyl (PCB) remediation waste at the Behr Peoria, Inc. (Behr) facility located at 2424 West Clark Street, Peoria, Illinois (Site) as required under 40 CFR 761.61(a)(3). The Site has been identified as LPC#: 1430655140 and U.S. EPA ID: ILD065238503.

As part of a 2010 renovation, Behr Peoria, Inc. discovered a significant volume of soil-based fill material in a 100×40×9 foot concrete-lined former building foundation. The fill material consists of a

mixture of auto fluff¹, bulk product waste from scrap metal recycling activities (e.g., slag), soil, and gravel. The fill material was excavated, stockpiled on a concrete pad, and covered with tarps. Tephra Environmental Compliance LLC (Tephra) and GHD, Inc. (GHD) were retained by Behr Peoria Inc. (Behr) to assist with the characterization and disposal of this waste.

Preliminary soil sample results gathered for waste stream characterization purposes identified polychlorinated biphenyl (PCB) concentrations above 50 parts per million (ppm) in one of the three samples obtained from the excavation pile.

Tephra developed a Toxic Substances Control Act (TSCA) waste characterization plan which was approved in an email from Mirtha Cápiro of the U.S. EPA to Bernadette Scheller (now Bernadette Greenwood) of Tephra dated December 17, 2014. The TSCA waste characterization plan included the division of the stockpile into quadrants and the collection of 50 soil samples for PCB analysis.

GHD initiated field activities on August 26, 2015 and collected the soil samples described in the TSCA waste characterization plan plus additional samples to support RCRA waste characterization efforts. The results of the sampling indicate that the northern half of the pile includes PCBs >50 ppm and the southern half includes PCBs <50 ppm.

GHD has prepared the attached Work Plan for Self-Implementing On-Site Cleanup and Disposal of PCB Remediation Waste (Work Plan) with a written certification signed by the owner of the property. The Work Plan is based on the 40 CFR 761.61(c) risk-based disposal approval. The Work Plan proposes loading the stockpiled waste onto trucks and transporting the waste to appropriate landfills, and also describes the nature of the contamination and a summary of the sampling procedures used to characterize the Site. We request a review and approval of the attached Work Plan by the U.S. EPA.

¹ Auto fluff is the non-metallic material that remains after junked automobiles are stripped and shredded during the recycling process.

Please let me know if you have any questions or comments regarding this request. I can be reached by phone at 773-380-9731 or by email at douglas.soutter@ghd.com.

Sincerely,

GHD

Douglas Soutter

DS/lg/1

Encl.

cc: Ronald Coupar, Behr Peoria, Inc.

Bernadette Greenwood, Tephra Environmental Compliance

Work Plan for Self-Implementing On-Site Cleanup and Disposal of PCB Remediation Waste

Behr Peoria, Inc. Facility 2424 West Clark Street Peoria, Illinois

Executive Summary

This report provides notification to the Environmental Protection Agency (U.S. EPA), Illinois Environmental Protection Agency, and Peoria City/County Health Department of a planned self-implementing cleanup and disposal of polychlorinated biphenyl (PCB) remediation waste at the Behr Peoria, Inc. (Behr) facility located at 2424 West Clark Street, Peoria, Illinois (Site) as required under 40 CFR 761.61(a)(3). This notification includes Site characterization information, a cleanup plan, and a written certification by the owner, IBS Inc.

As part of a 2010 renovation, Behr discovered a significant volume of fill material in a 100×40×9 foot concrete-lined former building foundation. The fill material consists of a mixture of auto fluff, bulk product waste from scrap metal recycling activities (e.g., slag), soil, brick, cobbles, and gravel. The fill material was excavated, stockpiled on a concrete pad, and covered with tarps. Preliminary soil sample results gathered for waste stream characterization purposes identified PCB concentrations above 50 parts per million (ppm) in a sample obtained from the northern portion of the stockpile. Following the discovery of PCBs, additional Site characterization efforts were initiated. The characterization efforts included the collection of 16 PCB samples to support a statistical analysis, the development and approval of a PCB Remediation Waste Characterization Plan, and the collection of 50 samples for PCB analysis. As a result of the characterization the northern half of the stockpile (North Pile) was determined to contain greater than 50 ppm of PCBs and the southern half of the stockpile was determined to contain less than 50 ppm of PCBs.

A self-implementing plan (Work Plan) developed under 40 CFR 761.61(c) (risk-based disposal approval) is proposed and we request written approval of the Work Plan by the U.S. EPA. The Work Plan includes loading the stockpiled soil onto trucks and transporting the soil for disposal at appropriate landfills. Following the removal of the soil/fill, the concrete slab will be washed and then core samples will be collected for PCB analysis. The results of the core samples will be used to verify that the cleanup is complete.

Table of Contents

1.	Notifi	ication		1					
2.	Back	ground		1					
3.	Site (Characteriz	ation	1					
	3.1	Nature of	the Contamination, Including Kinds of Materials Contaminated	1					
	3.2	Investigat	tive Procedures	2					
4		3.2.1 3.2.2 3.2.3 3.2.4 3.2.4.1 3.2.4.2 3.2.4.3 3.2.4.4 3.2.4.5 3.2.4.6 3.2.4.7	February-March 2010 Initial Waste Characterization Sampling	2 3 3 3 3					
	3.3		and Extent of Contaminated Areas						
4.	Clea	nup Plan		4					
	4.1	Project Organization							
	4.2	Schedule							
	4.3	Health and Safety Plan							
	4.4	Project C	onsultants and Contractors						
		4.4.1 4.4.2 4.4.3 4.4.4 4.4.5	Environmental Consultants	6 6					
	4.5	Waste Characterization and Waste Profiles							
	4.6	Traffic Co	ontrol Plan	7					
	4.7	Technica	Approach to Soil Work	7					
		4.7.1 4.7.1.1 4.7.1.2 4.7.1.1 4.7.1.2 4.7.2 4.7.2 4.7.2.1 4.7.2.1 4.7.3 4.7.4 4.7.5 4.7.6	Mobilization and Site Preparation Southern Exclusion Zone (<50 ppm PCB) Northern Exclusion Zone (≥50 ppm PCB) Contamination Reduction Zone Support Zone Establishment of Site Security Loading of Soil/Fill Materials onto Trucks South Pile (<50 mg/kg PCBs) North Pile (≥50 mg/kg PCBs) Water Management Equipment and Personnel Decontamination Decontamination of the Concrete Slab and Verification Sampling Demobilization and Project Closeout	8 9 9 9 9 10 10 10					
5.	Owne	er's Written	Certification	11					
6.	Refe	rences		11					

Figure Index

Appendix E

Appendix F

Figure 1	Site location
Figure 2	Site plan
Figure 3	Stockpile sampling locations
Figure 4	Stockpile loading plan
Table Inc	dex
Within text	Page
Table 3.1	Number of Samples Required to Achieve 95% Confidence
Table 4.1	Schedule5
Following	text
Table 1	Sample Key, August 2015 Soil Sampling
Table 2	Analytical Results Summary of PCBs, August 2015 Soil Sampling
Table 3	Analytical Results Summary of PCBs, August 2015 Soil Sampling, South Pile
Table 4	Analytical Results Summary of PCBs, August 2015 Soil Sampling, North Pile
Table 5	Analytical Results Summary of RCRA Parameters, August 2015 Soil Sampling
Table 6	Analytical Results Summary of RCRA Parameters, August 2015 Soil Sampling, South Pile
Table 7	Analytical Results Summary of RCRA Parameters, August 2015 Soil Sampling, North Pile
Appendic	ces
Appendix A	2014 PCB Remediation Waste Characterization and Disposal Plan
Appendix E	Email from Mirtha Cápiro recommending that Behr implement the PCB waste characterization as proposed
Appendix C	2015 Laboratory Reports
Appendix D	2015 Validation memorandum

Resumes of GHD and Tephra project personnel

Certification by the property owner and the party conducting the cleanup

Abbreviations and Short Forms

Auto fluff The non-metallic material that remains after junked automobiles are stripped and

shredded during the recycling process

Behr Peoria, Inc. (formerly Joseph E. Behr & Son)

DOT U.S. Department of Transportation

GHD GHD Inc.

HASP Health and safety plan

HAZWOPER Hazardous Waste Operations and Emergency Response standard

Hiram Walker Hiram Walker & Sons/Gooderham & Worts Ltd., Plant No. 2

Heritage Environmental Services, LLC

IBS IBS, Inc. (formerly I. Bork & Sons)

Illinois EPA Illinois Environmental Protection Agency

mg/kg Milligrams per kilogram

NELAC National Environmental Laboratory Accreditation Conference

NFR No Further Remediation

North Pile Northern half of the stockpile (PCBs >50 ppm)

OSHA Occupational Safety and Health Administration

PCB Polychlorinated biphenyl

ppm Parts per million

Site Behr Peoria, Inc. Facility, 2424 West Clark Street, Peoria, Illinois

South Pile Southern half of the stockpile (PCBs <50 ppm)

SRP Illinois EPA Site Remediation Program

TCLP Toxic Characteristic Leaching Procedure

Tephra Environmental Compliance LLC

TSCA Toxic Substances Control Act

U.S. EPA U.S. Environmental Protection Agency

1. Notification

The U.S. Environmental Protection Agency (U.S. EPA), Illinois Environmental Protection Agency (Illinois EPA), and Peoria City/County Health Department are hereby notified of a planned self-implementing cleanup and disposal of polychlorinated biphenyl (PCB) remediation waste at the Behr Peoria, Inc. (Behr) facility located at 2424 West Clark Street, Peoria, Illinois (Site) as required under 40 CFR 761.61(a)(3). The Site has been identified as LPC#: 1430655140 and U.S. EPA ID: ILD065238503.

2. Background

From approximately the 1930s or 1940s (AP, 1979) until approximately 1968, the Site was owned and operated as Plant No. 2 by the Hiram Walker & Sons/Gooderham & Worts Ltd (Hiram Walker) distillers (Jordon, 2014). The Hiram Walker Plant No. 2 closed in approximately 1960. I. Bork & Sons, later called IBS, Inc. (IBS) purchased the Site and in 1968 opened a large new scrap metal processing plant that included an auto shredder. IBS operated the Site as a scrapyard until approximately 1999 when IBS began leasing the Site to Joseph E. Behr & Son (later called Behr Peoria, Inc.) (Jordon, 2014). Behr continues to operate the Site as a scrapyard. The Site location is shown on Figure 1 and a Site Plan is shown on Figure 2.

As part of a 2010 renovation, Behr discovered a significant volume of fill material in a 100×40×9 foot concrete-lined former building foundation. The fill material consists of a mixture of auto fluff¹, bulk product waste from scrap metal recycling activities (e.g., slag), soil, and gravel. Although the exact source is unknown, it is suspected these materials originated from metal salvaging operations.

The fill material was excavated, stockpiled on a concrete pad, and covered with tarps. Preliminary soil sample results gathered for waste stream characterization purposes identified polychlorinated biphenyl (PCB) concentrations above 50 parts per million (ppm) in one of the three samples obtained from the excavation pile. Following the discovery of PCBs, additional Site characterization efforts were initiated and are described in the following sections.

3. Site Characterization

3.1 Nature of the Contamination, Including Kinds of Materials Contaminated

The contaminated material is a fill material which was excavated from a former building foundation. The fill material is a mixture of auto fluff, bulk product waste from scrap metal recycling activities (e.g., slag), soil, brick, cobbles, and gravel. Portions of the fill material have exhibited PCB concentrations above 50 ppm. The fill material is currently stockpiled on a concrete pad and covered with tarps.

¹ Auto fluff is the non-metallic material that remains after junked automobiles are stripped and shredded during the recycling process.

3.2 Investigative Procedures

This section provides a summary of the procedures used to sample the stockpile for pre-cleanup characterization.

3.2.1 February-March 2010 Initial Waste Characterization Sampling

One composite sample was collected for waste stream characterization on February 26, 2010. This sample was submitted under an appropriate chain of custody to First Environmental, Inc. a National Environmental Laboratory Accreditation Conference (NELAC) certified testing laboratory in Naperville, Illinois. This sample was analyzed for Toxic Characteristic Leaching Procedure (TCLP) volatiles, semi-volatiles, metals, and total PCBs. The results of this sample did not identify any contaminants of concern above the regulatory limits for disposal in a Subtitle D landfill (Helsten, 2015).

Subsequent thereto, three additional soil samples were gathered for additional waste stream characterization on March 30, 2010 by a representative of Waste Management. Those samples were submitted for PCB analysis under chain of custody to TestAmerica Laboratories, Inc., a NELAC certified laboratory in University Park, Illinois. The results of the analysis identified a PCB concentration above 50 ppm in one of the three samples. This sample (S-11 NW) was collected from the northwest quadrant of the stockpile and exhibited a PCB concentration of 57 ppm (Helsten, 2015).

3.2.2 May 2010 Preliminary Statistical Evaluation Sampling

Based upon discussions between Behr, Tephra Environmental Compliance LLC (Tephra), and the U.S. EPA, Behr performed additional sampling and analysis of the stockpiled materials to support a statistical analysis. The stockpiled material was divided into four quadrants, each containing four sections. One section within each quadrant (for a total of four sections) was selected as a "pilot" section. Within the pilot section, four grab samples were obtained utilizing a backhoe and bucket. The samples were submitted to First Environmental, Inc. for analysis of PCBs. Remnant soils from the sampling process were returned to the point of origination within the stockpile (Helsten, 2015).

One of the 16 samples exhibited a PCB concentration greater than 50 ppm. This sample (S-11 NW2) was located in the northwest quadrant of the stockpile and had a PCB concentration of 60.3 milligrams per kilogram (mg/kg) (Helsten, 2015).

3.2.3 2010-2014 Self-Implementation Plan Modifications

In August 2010, Behr submitted a Self-Implementation Plan based on the results of the May 2010 sampling event. The 2010 Self-Implementation Plan was disapproved by the U.S. EPA and a period of technical discussions followed and on December 17, 2014, the U.S. EPA approved the characterization plan included in the 2014 PCB Remediation Waste Characterization and Disposal Plan, which is provided in Appendix A. The email approval is provided in Appendix B.

The characterization plan used the variance among PCB concentrations from the May 2010 sampling event to determine the number of samples required to achieve a statistical confidence of 95% that the mean PCB concentration is less than 50 ppm (with a Type II error rate <10%). The number of samples required to achieve the 95% confidence is shown in the table below:

Table 3.1 Number of Samples Required to Achieve 95% Confidence

Quadrant ID	Quadrant Location	Number of Samples
1	Northeast	11 (33/quadrant)
2	Southeast	3 (9/quadrant)
3	Northwest	2 (6/quadrant)
4	Southwest	0 (already identified as ≥50 ppm PCB)

This analysis was used to generate the sampling strategy that was approved by the U.S. EPA (Cápiro, 2014). The approved sampling strategy divided the stockpile into quadrants for evaluation. Each quadrant was subdivided into thirds and a specified number of samples were collected from each subdivision. This is shown on Figure 3.

3.2.4 August 2015 Stockpile Sampling Event

On August 26-27, 2015, GHD Inc. (GHD) sampled the stockpile for PCBs pursuant to the approved 2014 PCB Remediation Waste Characterization Plan with additional samples collected for Resource Conservation and Recovery Act (RCRA) waste characterization parameters.

3.2.4.1 Health and Safety Plan

A Site-specific health and safety plan (HASP) was prepared prior to the initiation of field work.

3.2.4.2 Utility Location

GHD sent an E-Request to the Joint Utility Locating Information for Excavators (JULIE) prior to the initiation of field work. GHD confirmed the JULIE clearances which were marked on the concrete pad.

3.2.4.3 Equipment Decontamination

Each piece of sampling equipment (e.g., hand auger) was decontaminated prior to use and between each sampling location by washing with water and a laboratory grade detergent (e.g., Alconox) followed by rinsing with distilled water.

3.2.4.4 Selection of Sampling Points

The sampling points were selected by dividing the pile into quadrants and subdividing the quadrants into thirds. The specified number of sample locations in each third of a quadrant were selected using a grid or at random. Grid sampling was used when the stockpile surface was relatively flat (with minimal risk of slip/trip/fall hazards) and the number of samples to be collected was large.

3.2.4.5 Sample Collection Methodology

At each location, a hand auger was advanced until refusal was encountered. Soil samples were transferred from the hand auger to laboratory-supplied bottles. The samples were placed in coolers with ice and transported to the project laboratory under chain of custody. A sample key is provided in Table 1.

3.2.4.6 Summary of PCB Analytical Results

Of the 50 samples collected for PCBs, three exceeded the 50 mg/kg threshold (SB-2, SB-33, and SB-34). Each of the exceedances was located in the northeast quadrant (Quadrant #1). The northwest quadrant (Quadrant #3) was identified as exceeding 50 mg/kg in earlier investigations. A summary of the PCB sample results is provided in Table 2. Breakdowns of the PCB analytical results for the South Pile and the North Pile are provided in Tables 3 and 4 respectively. The laboratory reports are provided in Appendix C and data validation memoranda are provided in Appendix D.

These results indicate that Toxic Substances Control Act (TSCA) regulations for remediation waste ≥50 mg/kg will apply to the northern half of the stockpile (North Pile). The southern half of the stockpile (South Pile) will be considered Non-Hazardous Special Waste.

3.2.4.7 Summary of RCRA Waste Characterization Analytical Results

One soil sample was collected from each quadrant and submitted for analysis to support RCRA characterization. An additional two soil samples were collected from the northwest quadrant (Quadrant #3) and submitted for analysis selected by the project's TSCA landfill. A summary of the RCRA characterization analytical results is provided in Table 5. Breakdowns of the RCRA characterization analytical results for the South Pile and the North Pile are provided on Tables 6 and 7 respectively.

These analytical results do not indicate any of the characteristics of hazardous waste under 40 CFR 261 or 35 IAC 721.

3.3 Location and Extent of Contaminated Areas

The location and extent of the North Pile and the South Pile areas are shown on Figure 2. The sample collection locations are shown on Figure 3.

4. Cleanup Plan

This section presents a cleanup plan for the Site, including schedule, disposal technology, and approach. This plan contains options and contingencies to be used if unanticipated higher concentrations or wider distributions of PCB remediation waste are found or other obstacles force changes in the cleanup approach.

4.1 Project Organization

The project team will be comprised of the following personnel:

Tephra Project Manager - Bernadette Greenwood

Bernadette Greenwood's responsibility will be to maintain the overall safety, quality, schedule, and financial objectives of the transport and disposal aspects of the project. Bernadette Greenwood will be Tephra's liaison with the client and will be involved in developing invoices and attending project meetings.

GHD Project Manager – Douglas Soutter

Douglas Soutter's responsibility will be to maintain the overall safety, quality, schedule, and financial

objectives of the loading, decontamination, and reporting aspects of the project. Douglas Soutter will be GHD's liaison with the client and will be involved in developing invoices and attending project meetings.

Field Project Manager – Mike Keppel

The Field Project Manager will be responsible for the day to day activities on the project and the sequencing/coordination of both subcontractors and GHD personnel on the project site. The Field Project Managers will be at the jobsite full time and will be responsible for maintaining the project schedule as well as project communication.

On-Site Health & Safety Officer

The Field Project Manager will also be responsible for Health & Safety at the project site. As the on-Site Health & Safety Officer, he will ensure that all of the work to be accomplished is performed in appropriate levels of protection. He will be responsible for reviewing each new task with GHD and subcontract personnel prior to the work activity starting so that everyone is aware of potential hazards associated with the new activities.

On-Site Quality Control Managers

The Field Project Manager will also be responsible for ensuring that all of the project work is performed in accordance with the project specifications and that all of the required submittals and project documentation are delivered in a complete and timely manner.

The resumes of these Tephra and GHD personnel are attached in Appendix E.

4.2 Schedule

A general project schedule is provided in the table below.

Table 4.1 Schedule

Task	Expected Duration
Mobilization and Site preparation	2 days
Loading southern half of stockpile	8 days
Loading northern half of stockpile	8 days
Decontamination of slab	4 days
Demobilization	2 days

A specific schedule for the work will be completed after approval of this plan by the U.S. EPA based on contractor availability.

4.3 Health and Safety Plan

All field work will be performed in accordance with Site-specific HASPs prepared for the Site by GHD and the environmental services contractor.

4.4 Project Consultants and Contractors

The consultants and contractors selected to work on the project are identified below along with contact information.

4.4.1 Environmental Consultants

Douglas Soutter GHD Inc. 6400 Shafer Court, Suite 400 Rosemont, IL 60018

Office: 773-380-9933 Cell: Not Bernadette Greenwood Tephra Environmental Compliance LLC P.O. Box 8 Baraboo, WI 53913

Cell: Not

Work: 608-448-2024

4.4.2 Project Laboratory

Accutest Laboratories of New England 50 D'Angelo Drive 495 Technology Center West Building One Marlborough, Massachusetts 01752

Phone: 508-481-6200 Fax: 508-481-7753

4.4.3 Environmental Services Contractor

The environmental services contractor is responsible for loading soil from the stockpile onto trucks provided by the transportation contractor.

Jevon Poncez

Environmental Management Alternatives (EMA) 10627 Midwest Industrial Blvd.

St. Louis, MO 63132 Phone: 314-785-6425 Cell: Not

4.4.4 Transportation

Qualified transportation contractors will be selected prior to the initiation of field work. The transportation contractors will be responsible for trucking the wastes to the selected treatment and disposal facilities.

4.4.5 Treatment Storage and Disposal Facilities

Wastes that are ≥50 mg/kg PCBs will be transported to the Heritage Landfill in Roachdale, Indiana.

Steve Cross, Strategic Accounts Manager 315-406-9342
Heritage Environmental Services, LLC (Heritage)
Heritage Roachdale Landfill
4370 W County RD 1275 N
Roachdale, IN 46172
Subtitle C - IND980503890

Subtitle C - IND980503890 Business: 765-435-2704 Business Fax: 765-435-3504 Wastes which do not exceed 50 mg/kg PCBs will be transported to the Clinton Landfill, Inc. facility in Clinton, Illinois.

Laura Skaggs, Technical Support Representative Peoria Disposal Company Clinton Landfill, Inc. 9550 Heritage Road Clinton, IL 61727

Phone: 217-935-8028 (scale house)

Fax: 217-935-5602

4.5 Waste Characterization and Waste Profiles

Tephra will make arrangements with and secure approvals from the project treatment, storage, and disposal facilities prior to the commencement of field activities. This will include the submission of relevant analytical reports and waste profile information to the landfills. The profiles will include:

- Soil/fill waste ≥50 ppm PCBs with associated tarps and discarded personal protective equipment (PPE)
- Soil/fill waste <50 ppm PCBs with associated tarps and discarded PPE
- Wash water, rinse water, and associated sediment from the decontamination of the concrete pad (including rainwater if encountered), equipment decontamination, and personnel decontamination

4.6 Traffic Control Plan

The Site is an active scrap metal processing facility and has accommodations for heavy truck traffic.

The remediation loadout will involve a maximum of approximately 11 trucks per day during our peak activity. The trucks will enter the facility using the main gate and will be diverted towards the stockpile area prior to the scale house.

Any trucks that come on site but do not enter the exclusion zones or the Contaminant Reduction Zone will not require decontamination. The loadout of trucks carrying impacted soils to the landfills will take place so that the tires of the trucks do not come in contact with the contaminated soils. Any vehicle that leaves the Exclusion Zone or the Contaminant Reduction Zone will be decontaminated prior to leaving the work site.

Public safety will remain a priority. If GHD believes the traffic management is not adequate, we will use our stop work authority until we are able to implement any necessary modifications.

4.7 Technical Approach to Soil Work

This section will discuss the setup of the project infrastructure and controls as well as the overall sequence of events that will be performed.

The project will be performed in the following phases:

- Mobilization and Site preparation
- Loading and transport of South Pile soil/fill with <50 mg/kg PCBs

- Loading and transport of North Pile soil/fill with ≥50 mg/kg PCBs
- Decontamination of concrete slab and equipment
- Demobilization and project closeout

A stockpile loading plan is provided as Figure 4.

4.7.1 Mobilization and Site Preparation

In preparation for Site work, EMA will mobilize earth moving equipment, personnel, decontamination facilities, and supporting equipment to the project site prior to the beginning of the project work.

The stockpile area will be divided into a Northern Exclusion Zone (containing ≥50 ppm PCBs), a Southern Exclusion Zone containing <50 ppm PCBs), a Contaminant Reduction Zone, and a Support Zone. Each zone will be demarcated using caution tape, construction fencing, or other access control measures. Details of each zone are provided below.

4.7.1.1 Southern Exclusion Zone (<50 ppm PCB)

The Southern Exclusion Zone will encompass areas where the loadout of the South Pile (<50 ppm PCB-impacted material) will be performed. The Southern Exclusion Zone will be clearly marked and protected from unauthorized entry. No one will enter the Southern Exclusion Zone without appropriate PPE, safety training, site specific orientation, Occupational Safety and Health Administration (OSHA) 40 Hour Hazardous Waste Operations and Emergency Response (HAZWOPER) training, and familiarity with the HASP.

4.7.1.1 Northern Exclusion Zone (≥50 ppm PCB)

The Northern Exclusion Zone will encompass areas where the loadout of the North Pile (≥50 ppm PCB-impacted material) will be performed. The Northern Exclusion Zone will be clearly marked and protected from unauthorized entry. No one will enter the Northern Exclusion Zone without appropriate PPE, safety training, site specific orientation, OSHA 40 Hour HAZWOPER training, and familiarity with the HASP.

4.7.1.2 Contamination Reduction Zone

The Contamination Reduction Zone will transition from the exclusion zones to the Support Zone and will house a personnel decontamination area and an equipment decontamination pad. The Contaminant Reduction Zone will be situated in a way that allows the South Pile to be loaded first.

The personnel decontamination area will be equipped with water, boot wash, first aid kit, clean PPE, and containers for spent PPE. Waste PPE will be loaded out daily with material going off site for disposal. This will be indicated on the manifest and the waste profile. Drums or storage tanks will be provided to capture and contain rinse waters generated by the personnel decontamination facility. Contaminated rinse water will be stored on-Site pending the disposal of liquid wastes.

The equipment decontamination pads will be constructed to accommodate the equipment (e.g., loaders, excavators) prior to exiting exclusion zones. The pad will consist of a bermed area with floors and berms covered with an impermeable liner overlain with vehicle-grade matting to prevent punctures or rips. The decontamination pad will be graded to a collection sump to allow decontamination rinse water to be captured and routed to a drum or storage tank pending the

disposal of liquid wastes. Residual soil or waste materials generated during decontamination will be reintroduced with the remaining stockpiled material for transport to the appropriate disposal facility with a subsequent load.

EMA will minimize the amount of equipment requiring decontamination by loading the trucks carrying impacted soils to the landfill over the exclusion zone fencing. All vehicles exiting the work area will be inspected to ensure that the vehicles are free of contamination prior to being released for transport. EMA will perform the majority of the excavation work within the exclusion zones using the same equipment for the duration of the project so that equipment will only need to be decontaminated once at the end of the project.

4.7.1.1 Support Zone

The Support Zone may contain field trailers, equipment staging, and areas for Site personnel and visitors to park vehicles and conduct activities outside work areas. A vehicle or field trailer will serve as the communication center for emergency situations and to provide a controlled environment for communications, administrative operations, and a point of contact location.

4.7.1.2 Establishment of Site Security

Construction fencing or caution tape will be installed to encompass the work zones. Work zones will only be accessible to authorized personnel entering through the Support Zone. All Site visitors will be required read and sign the HASP and sign the Site Visitor Log. Behr Site personnel will secure the entire facility at night using the existing fencing and gates.

4.7.2 Loading of Soil/Fill Materials onto Trucks

The loadout will commence with the South Pile. Soil in the North Pile will not be disturbed until the South Pile loadout is complete.

4.7.2.1 South Pile (<50 mg/kg PCBs)

This section of the work plan will discuss the details of the loading, transportation, and off-Site disposal of the southern half of the soil/fill stockpile which did not exceed 50 mg/kg of PCBs. This portion is estimated to be approximately 750 cubic yards (1,000 tons) of material. The soil/fill loadout will be complete when the concrete slab is prepared for power washing.

The South Pile will be loaded onto trucks and transported as Special Waste to the Clinton Landfill, Inc. landfill in Clinton, Illinois. All wastes will be shipped using Unified Hazardous Waste Management forms.

4.7.2.1 North Pile (≥50 mg/kg PCBs)

This section of the work plan will discuss the details of the loading, transportation, and off-Site disposal of the northern half of the soil/fill stockpile with concentrations of PCBs ≥ 50 mg/kg. This portion is estimated to be approximately 750 cubic yards (1,000 tons) of material. The soil/fill loadout will be complete when the concrete slab is prepared for power washing.

The North Pile will be loaded onto trucks and transported as TSCA waste to the Heritage Environmental Services, LLC facility in Roachdale, Indiana. All wastes will be shipped using Unified Hazardous Waste Management forms.

4.7.3 Water Management

Wastewater will be generated during the field work including wash water, rinse water (and rainwater if encountered) associated with personnel decontamination, equipment decontamination, and decontamination of the concrete pad. The wastewater will be stored in drums or tanks at the Site. Upon completion of the decontamination activities, the stored wastewater will be characterized under RCRA and TSCA and then transported to an appropriate facility for treatment and disposal. The wastewater will be shipped using appropriate waste stream manifest protocols.

4.7.4 Equipment and Personnel Decontamination

All equipment and personnel exiting the exclusion zones will go through the Contaminant Reduction Zone. Spent PPE will be collected in garbage bags and the bags will be disposed of with the loads of material that are being sent off Site. All of the equipment leaving the site will be decontaminated using low volume pressure washers. All wastewater will be collected in drums or tanks as described above.

4.7.5 Decontamination of the Concrete Slab and Verification Sampling

After the loadout of the stockpiled soil is complete, the concrete slab will be prepared for decontamination by constructing water runoff control features on the downgradient portion of the slab (e.g., sump pumps and bentonite berms or spill control equipment). The slab will then be decontaminated by washing with water and non-foaming detergent followed by a water rinse using low volume pressure washers. All the wash and rinse water will be collected and stored pending off-Site treatment and disposal.

An organic rinse (e.g., kerosene) will not be used due to the negligible benefit and concerns of releases and fire hazards (Behr operations use cutting torches near the stockpile).

After the slab has dried to the point where there is no standing water, concrete core samples will be collected and submitted for analysis of PCBs². Three core samples will be collected in the Northern Exclusion Zone and three core samples will be collected in the Southern Exclusion Zone. The results of the core samples will be used to verify that the cleanup is complete.

4.7.6 Demobilization and Project Closeout

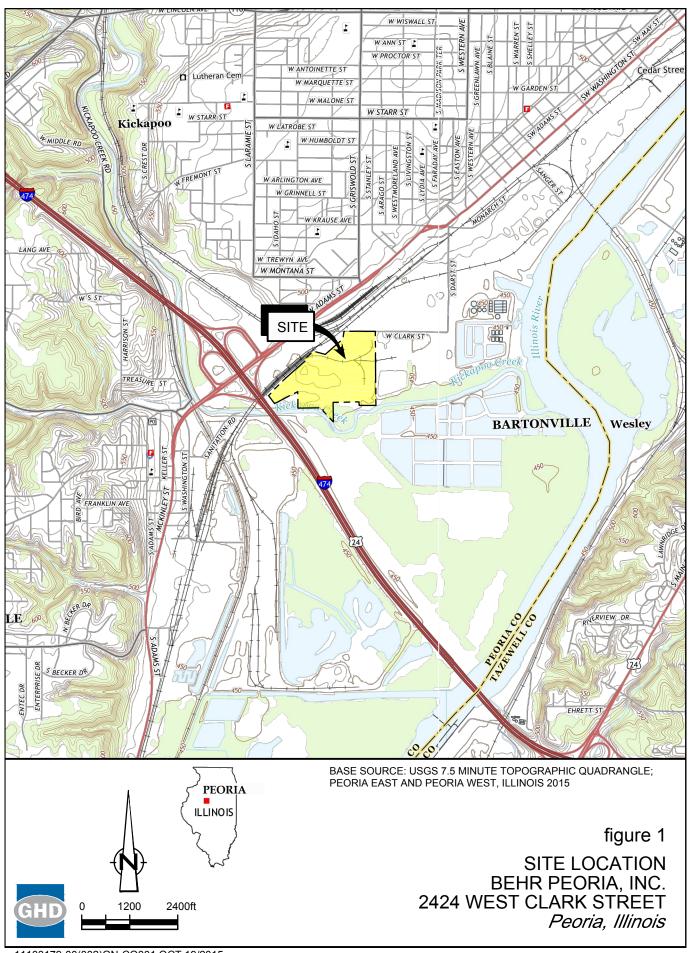
Following completion of remedial activities, EMA will remove equipment, materials, and temporary facilities from the Site. Temporary structures, support zones, and decontamination areas will be disassembled and the components will be properly disposed of off Site.

A final Site inspection will be performed by the engineer to ensure the Site has been restored to a condition that is satisfactory to the Behr, IBS, Tephra, and GHD.

² The wipe sample approaches specified in 40 CFR 761.30 and 761.79 cannot be used because liquid PCBs were not spilled onto the slab (40 CFR 761.30(p)) and the stockpile was on the concrete slab for more than 72 hours (40 CFR 761.79(b)(4)).

5. Owner's Written Certification

The written certification, signed by the owner of the property where the cleanup site is located (IBS) and the party conducting the cleanup (Behr) required under 40 CFR 761.61(a)(3)(i)(E) is provided in Appendix F.

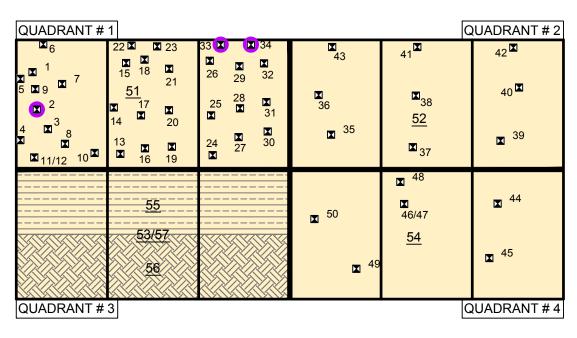

6. References

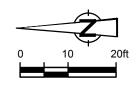
AP. 1979. Hiram Walker to Close Peoria Distillery. *Evening Independent*. St. Petersburg: Evening Independent, April 13, 1979.

Cápiro, Mirtha. 2014. Email to Bernadette Scheller regarding Behr's proposed PCB waste characterization. Chicago: U.S. Environmental Protection Agency, December 17, 2014.

Helsten, Charles F. 2015. Letter to Todd R. Wiener regarding PCB Remediation Action (2424 West Clark Street, Peoria, Illinois). Rockford: Hinshaw & Culbertson, LLP, February 19, 2015.

Jordon, David P. 2014. Peoria Area Rail Users 2014 - Behr Iron & Metal. *Peoria Station.* [Online] November 3, 2014. [Cited: August 27, 2015.] http://peoriastation.com/?p=1549.





GHD

SITE PLAN BEHR PEORIA, INC. 2424 WEST CLARK STREET Peoria, Illinois

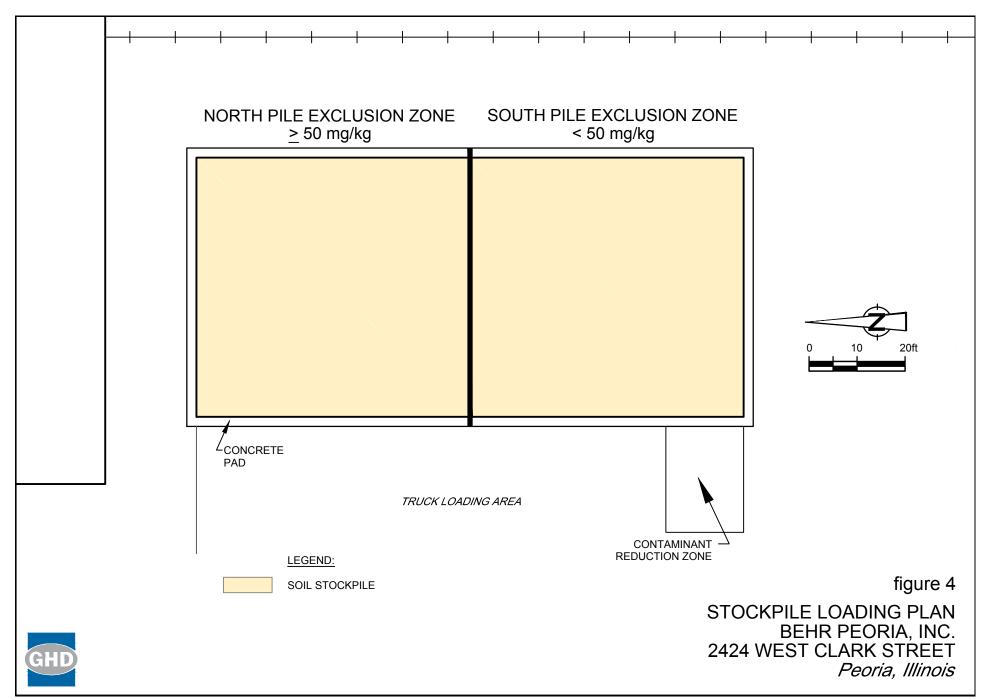
SOIL STOCKPILE

LEGEND:

53 COMPOSITE SOIL SAMPLE OF QUADRANT

- 55-COMPOSITE SOIL SAMPLE (EAST SIDE)

56 COMPOSITE SOIL SAMPLE (WEST SIDE)


1 🔳 SOIL SAMPLE LOCATION

2 🔳 SAMPLE LOCATIONS >50 mg/kg PCBs figure 3

SOIL SAMPLE LOCATIONS BEHR PEORIA, INC. 2424 WEST CLARK STREET

Peoria, Illinois

Sample Key August 2015 Soil Sampling Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

GHD Sample Number	Location Identifier	Quadrant ¹	Section ²	Sample Elevation (feet above concrete pad)	Sample Matrix	Date Collected	Time Collected	QA / QC ³	Analyses	Notes
S - 082615 - GW - 01	1	1	1	6	Soil	8/26/2015	8:49 AM	-	PCBs ⁴	
S - 082615 - GW - 02	2	1	1	5	Soil	8/26/2015	9:04 AM	-	PCBs	
S - 082615 - GW - 03	3	1	1	6	Soil	8/26/2015	9:11 AM	-	PCBs	
S - 082615 - GW - 04	4	1	1	2	Soil	8/26/2015	9:22 AM	-	PCBs	
S - 082615 - GW - 05	5	1	1	2	Soil	8/26/2015	9:26 AM	-	PCBs	
S - 082615 - GW - 06	6	1	1	1	Soil	8/26/2015	9:40 AM	-	PCBs	
S - 082615 - GW - 07	7	1	1	6	Soil	8/26/2015	9:58 AM	-	PCBs	
S - 082615 - GW - 08	8	1	1	6	Soil	8/26/2015	10:02 AM	-	PCBs	
S - 082615 - GW - 09	9	1	1	6	Soil	8/26/2015	10:08 AM	-	PCBs	
S - 082615 - GW - 10	10	1	1	6	Soil	8/26/2015	10:15 AM	-	PCBs	
S - 082615 - GW - 11	11	1	1	6	Soil	8/26/2015	10:20 AM	-	PCBs	
S - 082615 - GW - 12	12	1	1	6	Soil	8/26/2015	10:23 AM	Duplicate	PCBs	
S - 082615 - GW - 13	13	1	2	6	Soil	8/26/2015	10:27 AM	-	PCBs	
S - 082615 - GW - 14	14	1	2	6	Soil	8/26/2015	10:32 AM	-	PCBs	
S - 082615 - GW - 15	15	1	2	6	Soil	8/26/2015	10:39 AM	-	PCBs	
S - 082615 - GW - 16	16	1	2	6	Soil	8/26/2015	10:43 AM	-	PCBs	
S - 082615 - GW - 17	17	1	2	6	Soil	8/26/2015	10:59 AM	-	PCBs	
S - 082615 - GW - 18	18	1	2	6	Soil	8/26/2015	11:07 AM	-	PCBs	
S - 082615 - GW - 19	19	1	2	6	Soil	8/26/2015	11:10 AM	-	PCBs	
S - 082615 - GW - 20	20	1	2	6	Soil	8/26/2015	11:13 AM	-	PCBs	
S - 082615 - GW - 21	21	1	2	6	Soil	8/26/2015	11:17 AM	-	PCBs	
S - 082615 - GW - 22	22	1	2	1	Soil	8/26/2015	11:35 AM	-	PCBs	
S - 082615 - GW - 23	23	1	2	1	Soil	8/26/2015	11:45 AM	-	PCBs	
S - 082615 - GW - 24	24	1	3	6	Soil	8/26/2015	12:59 PM	-	PCBs	
S - 082615 - GW - 25	25	1	3	6	Soil	8/26/2015	1:04 PM	-	PCBs	
S - 082615 - GW - 26	26	1	3	6	Soil	8/26/2015	1:12 PM	-	PCBs	
S - 082615 - GW - 27	27	1	3	6	Soil	8/26/2015	1:15 PM	-	PCBs	
S - 082615 - GW - 28	28	1	3	6	Soil	8/26/2015	1:19 PM	-	PCBs	
S - 082615 - GW - 29	29	1	3	6	Soil	8/26/2015	1:24 PM	-	PCBs	
S - 082615 - GW - 30	30	1	3	6	Soil	8/26/2015	1:43 PM	-	PCBs	
S - 082615 - GW - 31	31	1	3	6	Soil	8/26/2015	1:49 PM	-	PCBs	
S - 082615 - GW - 32	32	1	3	5.5	Soil	8/26/2015	1:52 PM	-	PCBs	
S - 082615 - GW - 33	33	1	3	1	Soil	8/26/2015	2:08 PM	-	PCBs	
S - 082615 - GW - 34	34	1	3	1	Soil	8/26/2015	2:14 PM	-	PCBs	
S - 082615 - GW - 35	35	2	1	6	Soil	8/26/2015	2:21 PM	-	PCBs	
S - 082615 - GW - 36	36	2	1	6	Soil	8/26/2015	2:25 PM	-	PCBs	
S - 082615 - GW - 37	37	2	2	6	Soil	8/26/2015	2:32 PM	-	PCBs	
S - 082615 - GW - 38	38	2	2	6	Soil	8/26/2015	2:35 PM	-	PCBs	
S - 082615 - GW - 39	39	2	3	6	Soil	8/26/2015	2:41 PM	-	PCBs	
S - 082615 - GW - 40	40	2	3	4.5	Soil	8/26/2015	2:48 PM	-	PCBs	

Table 1 Page 2 of 2

Sample Key August 2015 Soil Sampling Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

GHD Sample Number	Location Identifier	Quadrant ¹	Section ²	Sample Elevation (feet above concrete pad)	Sample Matrix	Date Collected	Time Collected	QA/QC ³	Analyses	Notes
S - 082615 - GW - 41	41	2	2	1	Soil	8/26/2015	3:08 PM	-	PCBs	
S - 082615 - GW - 42	42	2	3	1	Soil	8/26/2015	3:11 PM	-	PCBs	
S - 082715 - GW - 43	43	2	1	1.5	Soil	8/27/2015	7:36 AM	-	PCBs	
S - 082715 - GW - 44	44	4	3	6	Soil	8/27/2015	7:44 AM	-	PCBs	
S - 082715 - GW - 45	45	4	3	6	Soil	8/27/2015	7:48 AM	-	PCBs	
S - 082715 - GW - 46	46	4	2	6	Soil	8/27/2015	7:52 AM	-	PCBs	
S - 082715 - GW - 47	47	4	2	6	Soil	8/27/2015	7:56 AM	Duplicate	PCBs	
S - 082715 - GW - 48	48	4	2	6	Soil	8/27/2015	7:59 AM	· -	PCBs	
S - 082715 - GW - 49	49	4	1	6	Soil	8/27/2015	8:04 AM	-	PCBs	
S - 082715 - GW - 50	50	4	1	6	Soil	8/27/2015	8:08 AM	-	PCBs	
S - 082715 - GW - 51	51 (composite)	1	1, 2, & 3	6	Soil	8/27/2015	9:14 AM	-	RCRA Parameters ⁵	
S - 082715 - GW - 52	52 (composite)	2	1, 2, & 3	6	Soil	8/27/2015	9:23 AM	-	RCRA Parameters	
S - 082715 - GW - 53	53 (composite)	3	1, 2, & 3	6	Soil	8/27/2015	9:32 AM	-	RCRA Parameters	
S - 082715 - GW - 54	54 (composite)	4	1, 2, & 3	6	Soil	8/27/2015	9:44 AM	-	RCRA Parameters	
S - 082715 - GW - 55		3	1, 2, & 3 (East Side)	6	Soil	8/27/2015	10:24 AM	-	Landfill 6 ⁶	Collected for Heritage ⁷
S - 082715 - GW - 56	56 (composite)	3	1, 2, & 3 (West Side)	6	Soil	8/27/2015	10:33 AM	-	Landfill 6	Collected for Heritage
S - 082715 - GW - 57	57 (composite)	3	1, 2, & 3	6	Soil	8/27/2015	10:38 AM	-	PCBs	Collected for Heritage

Notes:

¹Quadrant 1 is the northeast quadrant. Quadrant 2 is the southeast quadrant. Quadrant 3 is the northwest quadrant. Quadrant 4 is the southwest quadrant.

²Each quadrant was divided into 3 sections. Section 1 is the northern section. Section 2 is the central section. Section 3 is the southern section.

³QA/QC - Quality Assurance/Quality Control

⁴PCBs - polychlorinated biphenyls

⁵The 'RCRA Parameter' list includes: toxicity characteristic leaching procedure (TCLP) volatile organic compounds (VOCs), TCLP semivolatile organic compounds (SVOCs), TCLP metals, TCLP herbicides, TCLP pesticides, reactive cyanide, reactive sulfide, phenols, bulk density, total solids, flashpoint, pH, and extractable organic halides (EOX)

⁶'Landfill 6' is a parameter list selected by Heritage

⁷Samples collected at the request Heritage Environmental Services for their own independent analysis. GHD does not expect to receive the analytical results of these samples.

Table 2

Analytical Results Summary of PCBs, August 2015 Soil Sampling Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

Elevation (feet above	Location ID: Sample Name: Sample Date: concrete slab):	TSCA	1 S-082615-GW-01 8/26/2015 6	2 S-082615-GW-02 8/26/2015 5	3 S-082615-GW-03 8/26/2015 6	4 S-082615-GW-04 8/26/2015 2	5 S-082615-GW-05 8/26/2015 2	6 S-082615-GW-06 8/26/2015 1	7 S-082615-GW-07 8/26/2015 6	8 S-082615-GW-08 8/26/2015 6	9 S-082615-GW-09 8/26/2015 6
Parameters	Units	Threshold Limit a									
Pesticides/PCBs											
Aroclor-1016 (PCB-1016	s) mg/kg	50	0.036 U	0.04 U	0.036 U	0.036 U	0.037 U	0.037 U	0.035 U	0.036 U	0.036 U
Aroclor-1221 (PCB-1221	,	50	0.036 U	0.04 U	0.036 U	0.036 U	0.037 U	0.037 U	0.035 U	0.036 U	0.036 U
Aroclor-1232 (PCB-1232		50	0.036 U	0.04 U	0.036 U	0.036 U	0.037 U	0.037 U	0.035 U	0.036 U	0.036 U
Aroclor-1242 (PCB-1242	e) mg/kg	50	0.036 U	0.04 U	0.036 U	0.036 U	0.037 U	0.037 U	0.035 U	0.036 U	0.036 U
Aroclor-1248 (PCB-1248	B) mg/kg	50	6.77	42.9	15.2	12.5	11	5.13	4.07	5.3	8.98
Aroclor-1254 (PCB-1254	,	50	10.1	38.9	13	14.8	15.9	5.74	7.38	7.9	11.7
Aroclor-1260 (PCB-1260)) mg/kg	50	2.34	3.97 J	2.62 J	3.1 J	3.14 J	1.3	1.64	2.03	2.33
Total PCBs	mg/kg	50	19	90 ^a	31	30	30	12	13	15	23
Elevation (feet above	Location ID: Sample Name: Sample Date: concrete slab):	TSCA Threshold Limit	10 S-082615-GW-10 8/26/2015 6	11 S-082615-GW-11 8/26/2015 6	12 S-082615-GW-12 8/26/2015 6	13 S-082615-GW-13 8/26/2015 6	14 S-082615-GW-14 8/26/2015 6	15 S-082615-GW-15 8/26/2015 6	16 S-082615-GW-16 8/26/2015 6	17 S-082615-GW-17 8/26/2015 6	18 S-082615-GW-18 8/26/2015 6
		а									
Parameters	Units										
Pesticides/PCBs											
Aroclor-1016 (PCB-1016	s) mg/kg	50	0.036 U	0.037 U	0.036 U	0.035 U	0.037 U	0.036 U	0.037 U	0.036 U	0.037 U
Aroclor-1221 (PCB-1221) mg/kg	50	0.036 U	0.037 U	0.036 U	0.035 U	0.037 U	0.036 U	0.037 U	0.036 U	0.037 U
Aroclor-1232 (PCB-1232	ng/kg	50	0.036 U	0.037 U	0.036 U	0.035 U	0.037 U	0.036 U	0.037 U	0.036 U	0.037 U
Aroclor-1242 (PCB-1242	,	50	0.036 U	0.037 U	0.036 U	0.035 U	0.037 U	0.036 U	0.037 U	0.036 U	0.037 U
Aroclor-1248 (PCB-1248	3) mg/kg	50	8.04	3.45	2.8	7.45	16.5	8.02	7.11	2	2.72
Aroclor-1254 (PCB-1254	l) mg/kg	50	12.2	4.2	3.48	12.5	19.8	11	13.6	4.15	4.71
Aroclor-1260 (PCB-1260)) mg/kg	50	3	1.56	1.12	3.12	3.13 J	2.65	4.17	1.04	1.26 J
Total PCBs	mg/kg	50	23	9.2	7.4	23	39	22	25	7.2	8.7

Table 2

Analytical Results Summary of PCBs, August 2015 Soil Sampling Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

Elevation (feet above	Sample Date:	19 S-082615-GW-19 8/26/2015 6	20 S-082615-GW-20 8/26/2015 6	21 S-082615-GW-21 8/26/2015 6	22 S-082615-GW-22 8/26/2015 1	23 S-082615-GW-23 8/26/2015 1	24 S-082615-GW-24 8/26/2015 6	25 S-082615-GW-25 8/26/2015 6	26 S-082615-GW-26 8/26/2015 6	27 S-082615-GW-27 8/26/2015 6
Parameters	Units									
Pesticides/PCBs										
Aroclor-1016 (PCB-1016	mg/kg	0.037 U	0.037 U	0.035 U	0.037 U	0.038 U	0.039 U	0.036 U	0.036 U	0.037 U
Aroclor-1221 (PCB-1221	,	0.037 U	0.037 U	0.035 U	0.037 U	0.038 U	0.039 U	0.036 U	0.036 U	0.037 U
Aroclor-1232 (PCB-1232	mg/kg	0.037 U	0.037 U	0.035 U	0.037 U	0.038 U	0.039 U	0.036 U	0.036 U	0.037 U
Aroclor-1242 (PCB-1242) mg/kg	0.037 U	0.037 U	0.035 U	0.037 U	0.038 U	0.039 U	0.036 U	0.036 U	0.037 U
Aroclor-1248 (PCB-1248	,	9.48	15.7 J	13.4	6.32	6.1	7.77	10.9	10.7	11.5
Aroclor-1254 (PCB-1254	,	13.5	17.3	18.7	13	9.21	9.8	9.79	14.1	13.8
Aroclor-1260 (PCB-1260	,	3.14	2.25	4.14	3.11	1.83	2.18	2.36	3.35	2.93
Total PCBs	mg/kg	26	35	36	22	17	20	23	28	28
Elevation (feet above	Sample Date:	28 S-082615-GW-28 8/26/2015 6	29 S-082615-GW-29 8/26/2015 6	30 S-082615-GW-30 8/26/2015 6	31 S-082615-GW-31 8/26/2015 6	32 S-082615-GW-32 8/26/2015 5.5	33 S-082615-GW-33 8/26/2015 1	34 S-082615-GW-34 8/26/2015 1	35 S-082615-GW-35 8/26/2015 6	36 S-082615-GW-36 8/26/2015 6
Parameters	Units									
Pesticides/PCBs										
Aroclor-1016 (PCB-1016	,	0.036 U	0.036 U	0.037 U	0.035 U	0.038 U	0.038 U	0.039 U	0.036 U	0.037 U
Aroclor-1221 (PCB-1221	,	0.036 U	0.036 U	0.037 U	0.035 U	0.038 U	0.038 U	0.039 U	0.036 U	0.037 U
Aroclor-1232 (PCB-1232	,	0.036 U	0.036 U	0.037 U	0.035 U	0.038 U	0.038 U	0.039 U	0.036 U	0.037 U
Aroclor-1242 (PCB-1242	,	0.036 U	0.036 U	0.037 U	0.035 U	0.038 U	0.038 U	0.039 U	0.036 U	0.037 U
Aroclor-1248 (PCB-1248	,	7.85	13.2	11.3	8.26	21.3	22.7	20.6	6.12	8.54
Aroclor-1254 (PCB-1254	,	12.4	17.5	15	12.2	22.1	39.8	69.1 ^a	10.8	14.1
Aroclor-1260 (PCB-1260) mg/kg	2.82	4.46	2.69	2.86	3.41	5.93	8.79	4.31	3.01
Total PCBs	mg/kg	23	35	29	23	47	68 ^a	99 ^a	21	26

Table 2 Page 3 of 3

Analytical Results Summary of PCBs, August 2015 Soil Sampling Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

Elevation (feet above	Sample Date:	37 S-082615-GW-37 8/26/2015 6	38 S-082615-GW-38 8/26/2015 6	39 S-082615-GW-39 8/26/2015 6	40 S-082615-GW-40 8/26/2015 4.5	41 S-082615-GW-41 8/26/2015 1	42 S-082615-GW-42 8/26/2015 1	43 S-082715-GW-43 8/27/2015 1.5	44 S-082715-GW-44 8/27/2015 6	45 S-082715-GW-45 8/27/2015 6	46 S-082715-GW-46 8/27/2015 6
Parameters	Units										
Pesticides/PCBs											
Aroclor-1016 (PCB-1016	6) mg/kg	0.036 U	0.036 U	0.04 U	0.04 U	0.036 U	0.036 U	0.035 U	0.035 U	0.041 U	0.042 U
Aroclor-1221 (PCB-122	1) mg/kg	0.036 U	0.036 U	0.04 U	0.04 U	0.036 U	0.036 U	0.035 U	0.035 U	0.041 U	0.042 U
Aroclor-1232 (PCB-1232	2) mg/kg	0.036 U	0.036 U	0.04 U	0.04 U	0.036 U	0.036 U	0.035 U	0.035 U	0.041 U	0.042 U
Aroclor-1242 (PCB-1242	2) mg/kg	0.036 U	0.036 U	0.04 U	0.04 U	0.036 U	0.036 U	0.035 U	0.035 U	0.041 U	0.042 U
Aroclor-1248 (PCB-1248	3) mg/kg	9.56	3.56	4.1	2.1	5.07	4.62	4.27	3.18	0.902	1.74
Aroclor-1254 (PCB-1254	4) mg/kg	15.4	6.23	4.2	3.47	8.57	7.07	7.63	5.68	1.46	2.49
Aroclor-1260 (PCB-1260	O) mg/kg	3.59	1.64	0.762	0.863	2.67	1.76	1.86	1.58	0.322	0.525
Total PCBs	mg/kg	29	11	9	6	16	14	14	10	2.7	4.8

Location ID:	47	48	49	50
Sample Name:	S-082715-GW-47	S-082715-GW-48	S-082715-GW-49	S-082715-GW-50
Sample Date:	8/27/2015	8/27/2015	8/27/2015	8/27/2015
Elevation (feet above concrete slab):	6	6	6	6

Parameters	Units					
Pesticides/PCBs						
Aroclor-1016 (PCB-1016)	mg/kg	0.036 U	0.036 U	0.036 U	0.035 U	
Aroclor-1221 (PCB-1221)	mg/kg	0.036 U	0.036 U	0.036 U	0.035 U	
Aroclor-1232 (PCB-1232)	mg/kg	0.036 U	0.036 U	0.036 U	0.035 U	
Aroclor-1242 (PCB-1242)	mg/kg	0.036 U	0.036 U	0.036 U	0.035 U	
Aroclor-1248 (PCB-1248)	mg/kg	8.72	10.9	4.01	4.97	
Aroclor-1254 (PCB-1254)	mg/kg	11.6	28.2	6.71	9.61	
Aroclor-1260 (PCB-1260)	mg/kg	2.57	4.15	1.62	2.24	
Total PCBs	mg/kg	23	43	12	17	

Notes:

U - Not detected at the associated reporting limit

J - Estimated concentration mg/kg - milligrams per kilogram

Bold indicates an exceedence of the TSCA threshold limit

Table 3 Page 1 of 1

Analytical Results Summary of PCBs, August 2015 Soil Sampling South Pile

Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

Samp	cation ID: ble Name: ple Date: ete slab):	TSCA Threshold	35 S-082615-GW-35 8/26/2015 6	36 S-082615-GW-36 8/26/2015 6	37 S-082615-GW-37 8/26/2015 6	38 S-082615-GW-38 8/26/2015 6	39 S-082615-GW-39 8/26/2015 6	40 S-082615-GW-40 8/26/2015 4.5	41 S-082615-GW-41 8/26/2015 1	42 S-082615-GW-42 8/26/2015 1	
Parameters	Units	Limit a									
Pesticides/PCBs Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254) Aroclor-1260 (PCB-1260) Total PCBs	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	50 50 50 50 50 50 50	0.036 U 0.036 U 0.036 U 0.036 U 6.12 10.8 4.31 21	0.037 U 0.037 U 0.037 U 0.037 U 8.54 14.1 3.01 26	0.036 U 0.036 U 0.036 U 0.036 U 9.56 15.4 3.59	0.036 U 0.036 U 0.036 U 0.036 U 3.56 6.23 1.64 11	0.04 U 0.04 U 0.04 U 0.04 U 4.1 4.2 0.762 9	0.04 U 0.04 U 0.04 U 0.04 U 2.1 3.47 0.863 6	0.036 U 0.036 U 0.036 U 0.036 U 5.07 8.57 2.67	0.036 U 0.036 U 0.036 U 0.036 U 4.62 7.07 1.76	
Loc	cation ID:		43 S-082715-GW-43	44 S-082715-GW-44	45 S-082715-GW-45	46 S-082715-GW-46	47 S-082715-GW-47	48 S-082715-GW-48	49 S-082715-GW-49	50 S-082715-GW-50	
-	ole Name: uple Date: ete slab): Units	TSCA Threshold Limit a	8/27/2015 1.5	8/27/2015 6	8/27/2015 6	8/27/2015 6	8/27/2015 6	8/27/2015 6	8/27/2015 6	8/27/2015 6	

Notes: U - Not detected at the associated reporting limit

J - Estimated concentration mg/kg - milligrams per kilogram

Analytical Results Summary of PCBs, August 2015 Soil Sampling North Pile

Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

Elevation (feet above	Location ID: Sample Name: Sample Date: concrete slab):	TCA	1 S-082615-GW-01 8/26/2015 6	2 S-082615-GW-02 8/26/2015 5	3 S-082615-GW-03 8/26/2015 6	4 S-082615-GW-04 8/26/2015 2	5 S-082615-GW-05 8/26/2015 2	6 s-082615-GW-06 8/26/2015 1	7 S-082615-GW-07 8/26/2015 6	8 S-082615-GW-08 8/26/2015 6	9 S-082615-GW-09 8/26/2015 6
Parameters	Units	TSCA Threshold Limit a									
Pesticides/PCBs											
		5 0	0.00011	0.0411	0.00011	0.00011	0.007.11	0.00711	0.005.11	0.00011	0.00011
Aroclor-1016 (PCB-1016)		50 50	0.036 U 0.036 U	0.04 U 0.04 U	0.036 U 0.036 U	0.036 U 0.036 U	0.037 U 0.037 U	0.037 U 0.037 U	0.035 U 0.035 U	0.036 U 0.036 U	0.036 U 0.036 U
Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232)		50 50	0.036 U	0.04 U	0.036 U	0.036 U	0.037 U	0.037 U	0.035 U	0.036 U	0.036 U
Aroclor-1242 (PCB-1242)		50 50	0.036 U	0.04 U	0.036 U	0.036 U	0.037 U	0.037 U	0.035 U	0.036 U	0.036 U
Aroclor-1248 (PCB-1248)		50	6.77	42.9	15.2	12.5	11	5.13	4.07	5.3	8.98
Aroclor-1254 (PCB-1254)		50	10.1	38.9	13	14.8	15.9	5.74	7.38	7.9	11.7
Aroclor-1260 (PCB-1260)		50	2.34	3.97 J	2.62 J	3.1 J	3.14 J	1.3	1.64	2.03	2.33
Total PCBs	mg/kg	50	19	90 ^a	31	30	30	12	13	15	23
Elevation (feet above	·	TSCA Threshold Limit a	10 S-082615-GW-10 8/26/2015 6	11 S-082615-GW-11 8/26/2015 6	12 S-082615-GW-12 8/26/2015 6	13 S-082615-GW-13 8/26/2015 6	14 S-082615-GW-14 8/26/2015 6	15 s-082615-GW-15 8/26/2015 6	16 s-082615-GW-16 8/26/2015 6	17 S-082615-GW-17 8/26/2015 6	18 S-082615-GW-18 8/26/2015 6
Elevation (feet above Parameters Pesticides/PCBs	Sample Name: Sample Date:	Threshold Limit	S-082615-GW-10 8/26/2015	S-082615-GW-11 8/26/2015	S-082615-GW-12 8/26/2015	S-082615-GW-13 8/26/2015	S-082615-GW-14 8/26/2015	S-082615-GW-15 8/26/2015	S-082615-GW-16 8/26/2015	S-082615-GW-17 8/26/2015	S-082615-GW-18 8/26/2015
Parameters	Sample Name: Sample Date: concrete slab): Units	Threshold Limit	S-082615-GW-10 8/26/2015	S-082615-GW-11 8/26/2015	S-082615-GW-12 8/26/2015	S-082615-GW-13 8/26/2015	S-082615-GW-14 8/26/2015	S-082615-GW-15 8/26/2015	S-082615-GW-16 8/26/2015	S-082615-GW-17 8/26/2015	S-082615-GW-18 8/26/2015
Parameters Pesticides/PCBs	Sample Name: Sample Date: concrete slab): Units mg/kg	Threshold Limit a	S-082615-GW-10 8/26/2015 6	S-082615-GW-11 8/26/2015 6	S-082615-GW-12 8/26/2015 6	S-082615-GW-13 8/26/2015 6	S-082615-GW-14 8/26/2015 6	S-082615-GW-15 8/26/2015 6	S-082615-GW-16 8/26/2015 6	S-082615-GW-17 8/26/2015 6	S-082615-GW-18 8/26/2015 6
Parameters Pesticides/PCBs Aroclor-1016 (PCB-1016)	Sample Name: Sample Date: concrete slab): Units mg/kg mg/kg	Threshold Limit a	S-082615-GW-10 8/26/2015 6	S-082615-GW-11 8/26/2015 6	8-082615-GW-12 8/26/2015 6	S-082615-GW-13 8/26/2015 6	S-082615-GW-14 8/26/2015 6	S-082615-GW-15 8/26/2015 6	S-082615-GW-16 8/26/2015 6	S-082615-GW-17 8/26/2015 6	S-082615-GW-18 8/26/2015 6
Parameters Pesticides/PCBs Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221)	Sample Name: Sample Date: concrete slab): Units mg/kg mg/kg mg/kg mg/kg	Threshold Limit a 50 50	S-082615-GW-10 8/26/2015 6 0.036 U 0.036 U	S-082615-GW-11 8/26/2015 6 0.037 U 0.037 U	S-082615-GW-12 8/26/2015 6 0.036 U 0.036 U	S-082615-GW-13 8/26/2015 6 0.035 U 0.035 U	S-082615-GW-14 8/26/2015 6 0.037 U 0.037 U	S-082615-GW-15 8/26/2015 6 0.036 U 0.036 U	S-082615-GW-16 8/26/2015 6 0.037 U 0.037 U	S-082615-GW-17 8/26/2015 6 0.036 U 0.036 U	S-082615-GW-18 8/26/2015 6 0.037 U 0.037 U
Parameters Pesticides/PCBs Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232)	Sample Name: Sample Date: concrete slab): Units mg/kg mg/kg mg/kg mg/kg mg/kg	Threshold Limit a 50 50 50	8-082615-GW-10 8/26/2015 6 0.036 U 0.036 U 0.036 U	8-082615-GW-11 8/26/2015 6 0.037 U 0.037 U 0.037 U	8-082615-GW-12 8/26/2015 6 0.036 U 0.036 U 0.036 U	8-082615-GW-13 8/26/2015 6 0.035 U 0.035 U 0.035 U	8-082615-GW-14 8/26/2015 6 0.037 U 0.037 U 0.037 U	8-082615-GW-15 8/26/2015 6 0.036 U 0.036 U 0.036 U	8-082615-GW-16 8/26/2015 6 0.037 U 0.037 U 0.037 U	8-082615-GW-17 8/26/2015 6 0.036 U 0.036 U 0.036 U	8-082615-GW-18 8/26/2015 6 0.037 U 0.037 U 0.037 U
Parameters Pesticides/PCBs Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242)	Sample Name: Sample Date: concrete slab): Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Threshold Limit a 50 50 50 50	8-082615-GW-10 8/26/2015 6 0.036 U 0.036 U 0.036 U 0.036 U	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U	8-082615-GW-12 8/26/2015 6 0.036 U 0.036 U 0.036 U 0.036 U	8-082615-GW-13 8/26/2015 6 0.035 U 0.035 U 0.035 U 0.035 U 0.035 U	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U	8-082615-GW-15 8/26/2015 6 0.036 U 0.036 U 0.036 U 0.036 U	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U	8-082615-GW-17 8/26/2015 6 0.036 U 0.036 U 0.036 U 0.036 U	8-082615-GW-18 8/26/2015 6 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U
Parameters Pesticides/PCBs Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248)	Sample Name: Sample Date: concrete slab): Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Threshold Limit a 50 50 50 50 50	0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 8.04	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 3.45	8-082615-GW-12 8/26/2015 6 0.036 U 0.036 U 0.036 U 0.036 U 2.8	8-082615-GW-13 8/26/2015 6 0.035 U 0.035 U 0.035 U 0.035 U 7.45	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 16.5	0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 8.02	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 7.11	8-082615-GW-17 8/26/2015 6 0.036 U 0.036 U 0.036 U 0.036 U 2	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 2.72
Parameters Pesticides/PCBs Aroclor-1016 (PCB-1016) Aroclor-1221 (PCB-1221) Aroclor-1232 (PCB-1232) Aroclor-1242 (PCB-1242) Aroclor-1248 (PCB-1248) Aroclor-1254 (PCB-1254)	Sample Name: Sample Date: concrete slab): Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Threshold Limit a 50 50 50 50 50 50 50 50	0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 12.2	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 3.45 4.2	0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 2.8 3.48	0.035 U 0.035 U 0.035 U 0.035 U 0.035 U 7.45 12.5	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 16.5 19.8	0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 8.02 11	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 7.11 13.6	0.036 U 0.036 U 0.036 U 0.036 U 0.036 U 2 4.15	0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 0.037 U 2.72 4.71

Analytical Results Summary of PCBs, August 2015 Soil Sampling North Pile

Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

Elevation (feet above	Location ID: Sample Name: Sample Date: concrete slab):	19 S-082615-GW-19 8/26/2015 6	20 S-082615-GW-20 8/26/2015 6	21 S-082615-GW-21 8/26/2015 6	22 S-082615-GW-22 8/26/2015 1	23 S-082615-GW-23 8/26/2015 1	24 S-082615-GW-24 8/26/2015 6	25 S-082615-GW-25 8/26/2015 6	26 S-082615-GW-26 8/26/2015 6
	,	•	-	-			-	-	
Parameters	Units								
Pesticides/PCBs									
Aroclor-1016 (PCB-1016)) mg/kg	0.037 U	0.037 U	0.035 U	0.037 U	0.038 U	0.039 U	0.036 U	0.036 U
Aroclor-1221 (PCB-1221)		0.037 U	0.037 U	0.035 U	0.037 U	0.038 U	0.039 U	0.036 U	0.036 U
Aroclor-1232 (PCB-1232)	, ,	0.037 U	0.037 U	0.035 U	0.037 U	0.038 U	0.039 U	0.036 U	0.036 U
Aroclor-1242 (PCB-1242)	,	0.037 U	0.037 U	0.035 U	0.037 U	0.038 U	0.039 U	0.036 U	0.036 U
Aroclor-1248 (PCB-1248)	,	9.48	15.7 J	13.4	6.32	6.1	7.77	10.9	10.7
Aroclor-1254 (PCB-1254)	,	13.5	17.3	18.7	13	9.21	9.8	9.79	14.1
Aroclor-1260 (PCB-1260)	,	3.14	2.25	4.14	3.11	1.83	2.18	2.36	3.35
Total PCBs	mg/kg	26	35	36	22	17	20	23	28
Elevation (feet above	Location ID: Sample Name: Sample Date: concrete slab):	27 S-082615-GW-27 8/26/2015 6	28 S-082615-GW-28 8/26/2015 6	29 S-082615-GW-29 8/26/2015 6	30 S-082615-GW-30 8/26/2015 6	31 S-082615-GW-31 8/26/2015 6	32 S-082615-GW-32 8/26/2015 5.5	33 S-082615-GW-33 8/26/2015 1	34 S-082615-GW-34 8/26/2015 1
,	ŕ								
Parameters	Units								
Pesticides/PCBs									
Aroclor-1016 (PCB-1016)) mg/kg	0.037 U	0.036 U	0.036 U	0.037 U	0.035 U	0.038 U	0.038 U	0.039 U
Aroclor-1221 (PCB-1221)		0.037 U	0.036 U	0.036 U	0.037 U	0.035 U	0.038 U	0.038 U	0.039 U
Aroclor-1232 (PCB-1232)		0.037 U	0.036 U	0.036 U	0.037 U	0.035 U	0.038 U	0.038 U	0.039 U
Aroclor-1242 (PCB-1242)	,	0.037 U	0.036 U	0.036 U	0.037 U	0.035 U	0.038 U	0.038 U	0.039 U
Aroclor-1248 (PCB-1248)	,	11.5	7.85	13.2	11.3	8.26	21.3	22.7	20.6
Aroclor-1254 (PCB-1254)	,	13.8	12.4	17.5	15	12.2	22.1	39.8	69.1 ^a
Aroclor-1260 (PCB-1260)	,	2.93	2.82	4.46	2.69	2.86	3.41	5.93	8.79
Total PCBs	mg/kg	28	23	35	29	23	47	68 ^a	99 ^a

Notes:

Bold indicates an exceedence of the TSCA threshold limit

U - Not detected at the associated reporting limit

J - Estimated concentration mg/kg - milligrams per kilogram

Analytical Results Summary of RCRA Parameters, August 2015 Soil Sampling Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

Location ID: Sample Name: Sample Date: Elevation (feet above concrete pad):		RCRA-TCLP	51 S-082715-GW-51 8/27/2015 6	52 S-082715-GW-52 8/27/2015 6	53 S-082715-GW-53 8/27/2015 6	54 S-082715-GW-54 8/27/2015 6
		Hazardous Waste Criteria				
Parameters	Units	а				
Volatile Organic Compounds Total organic halides (TOX)	mg/kg		24.3	21 U	37.7	23 U
Volatile Organic Compounds, TCLP		0.7	0.0011	0.0011	0.00.11	0.0011
1,1-Dichloroethene 1,2-Dichloroethane	mg/L mg/L	0.7 0.5	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U
1,4-Dichlorobenzene	mg/L	7.5	0.20 U	0.20 U	0.20 U	0.20 U
2-Butanone (Methyl ethyl ketone) (MEK)	mg/L	200	1.0 U	1.0 U	1.0 U	1.0 U
Benzene	mg/L	0.5	0.10 U	0.10 U	0.10 U	0.10 U
Carbon tetrachloride	mg/L	0.5	0.20 U	0.20 U	0.20 U	0.20 U
Chlorobenzene	mg/L	100	0.20 U	0.20 U	0.20 U	0.20 U
Chloroform (Trichloromethane)	mg/L	6	0.20 U	0.20 U	0.20 U	0.20 U
Tetrachloroethene Trichloroethene	mg/L	0.7	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U	0.20 U 0.20 U
Vinyl chloride	mg/L mg/L	0.5 0.2	0.20 U	0.20 U	0.20 U	0.20 U
·		0.2	0.20 0	0.20 0	0.20 0	0.20 0
Semivolatile Organic Compounds, TCLI 1,4-Dichlorobenzene	mg/L	7.5	0.050 U	0.050 U	0.050 U	0.050 U
2,4,5-Trichlorophenol	mg/L	400	0.10 U	0.050 U	0.050 U	0.050 U
2,4,6-Trichlorophenol	mg/L	2	0.10 U	0.10 U	0.10 U	0.10 U
2,4-Dinitrotoluene	mg/L	0.13	0.10 U	0.10 U	0.10 U	0.10 U
2-Methylphenol	mg/L	200	0.10 U	0.10 U	0.10 U	0.10 U
3&4-Methylphenol	mg/L	200	0.10 U	0.10 U	0.10 U	0.10 U
Hexachlorobenzene	mg/L	0.13	0.050 U	0.050 U	0.050 U	0.050 U
Hexachlorobutadiene	mg/L	0.5	0.050 U	0.050 U	0.050 U	0.050 U
Hexachloroethane	mg/L	3	0.050 U	0.050 U	0.050 U	0.050 U
Nitrobenzene Pentachlorophenol	mg/L mg/L	2 100	0.050 U 0.10 U	0.050 U 0.10 U	0.050 U 0.10 U	0.050 U 0.10 U
Pyridine	mg/L	5	0.10 U	0.10 U	0.10 U	0.10 U
7	g	-				
Metals, TCLP						
Arsenic	mg/L	5	0.010 U	0.010 U	0.010 U	0.010 U
Barium	mg/L	100	2.3	2.0	2.5	2.7
Cadmium Chromium	mg/L	1 5	0.19 0.0035	0.11 0.0033	0.13 0.0022	0.14 0.0029
Lead	mg/L mg/L	5 5	0.0035	0.50	4.8	2.8
Mercury	mg/L	0.2	0.00020 U	0.00020 U	0.00020 U	0.00020 U
Selenium	mg/L	1	0.025 U	0.025 U	0.025 U	0.025 U
Silver	mg/L	5	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Pesticides/PCBs, TCLP						
Chlordane, technical	mg/L	0.03	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Endrin	mg/L	0.02	0.00050 U	0.00050 U	0.00050 U	0.00050 U
gamma-BHC (lindane)	mg/L	0.4	0.00050 U	0.00050 U	0.00050 U	0.00050 U
Heptachlor	mg/L	0.008	0.00050 U	0.00050 U	0.00050 U	0.00050 U
Heptachlor epoxide Methoxychlor	mg/L	0.008 10	0.00050 U 0.00050 U	0.00050 U 0.00050 U	0.00050 U 0.00050 U	0.00050 U 0.00050 U
Toxaphene	mg/L mg/L	0.5	0.0050 U	0.0050 U	0.0050 U	0.0050 U
Herbicides, TCLP						
2,4,5-TP (Silvex)	mg/L	1	0.010 U	0.010 U	0.010 U	0.010 U
2,4-Dichlorophenoxyacetic acid (2,4-D)	mg/L	10	0.010 U	0.010 U	0.010 U	0.010 U
Wet Chemistry						
Total solids	%		87.3	87.6	89.5	91.1
Ignitability	°F	<140	>230	>230	>230	>230
Phenolics (total)	mg/kg		2.7 U	2.8 U	2.7 U	2.7 U
Cyanide Reactive cyanide	mg/kg	 250	 1.7 U	0.13 UJ† 1.7 U	 1.7 U	0.13 UJ† 1.6 U
Reactive cyanide Reactive sulfide	mg/kg mg/kg	250 500	1.7 U 57 U	1.7 U 57 U	1.7 U 55 U	1.6 U 54 U
Total solids	mg/kg		883000	866000	892000	907000
Paint filter	mL/100g		0.50 U	0.50 U	0.50 U	0.50 U
pH	s.u.	>2 and <12	8.0	8.3	8.2	8.1
Geotechnical Parameters						
Bulk density	g/mL		1.1	1.3	1.2	1.3

mg/L - milligrams per liter mg/kg - milligrams per kilogram †Analysis performed past the recommended holding time

Notes: U - Not detected at the associated reporting limit

J - Estimated concentration

Table 6 Page 1 of 1

Analytical Results Summary of RCRA Parameters, August 2015 Soil Sampling South Pile

Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

Location ID: Sample Name: Sample Date: Elevation (feet above concrete pad):		RCRA-TCLP Hazardous	52 S-082715-GW-52 8/27/2015 6	54 S-082715-GW-54 8/27/2015 6
		Waste Criteria		
Parameters	Units	а		
Volatile Organic Compounds				
Total organic halides (TOX)	mg/kg		21 U	23 U
Volatile Organic Compounds, TCLP 1,1-Dichloroethene	ma/l	0.7	0.20 U	0.20 U
1,1-Dichloroethene	mg/L mg/L	0.7	0.20 U	0.20 U
1,4-Dichlorobenzene	mg/L	7.5	0.20 U	0.20 U
2-Butanone (Methyl ethyl ketone) (MEK)	mg/L	200	1.0 U	1.0 U
Benzene	mg/L	0.5	0.10 U	0.10 U
Carbon tetrachloride	mg/L	0.5	0.20 U	0.20 U
Chlorobenzene Chloroform (Trichloromethane)	mg/L mg/L	100 6	0.20 U 0.20 U	0.20 U 0.20 U
Tetrachloroethene	mg/L	0.7	0.20 U	0.20 U
Trichloroethene	mg/L	0.5	0.20 U	0.20 U
Vinyl chloride	mg/L	0.2	0.20 U	0.20 U
Semivolatile Organic Compounds, TCLF	•			
1,4-Dichlorobenzene	mg/L	7.5	0.050 U	0.050 U
2,4,5-Trichlorophenol	mg/L	400	0.10 U	0.10 U
2,4,6-Trichlorophenol	mg/L	2	0.10 U	0.10 U
2,4-Dinitrotoluene	mg/L	0.13	0.10 U	0.10 U
2-Methylphenol	mg/L	200	0.10 U	0.10 U
3&4-Methylphenol	mg/L	200	0.10 U	0.10 U
Hexachlorobenzene Hexachlorobutadiene	mg/L mg/L	0.13 0.5	0.050 U 0.050 U	0.050 U 0.050 U
Hexachloroethane	mg/L	3	0.050 U	0.050 U
Nitrobenzene	mg/L	2	0.050 U	0.050 U
Pentachlorophenol	mg/L	100	0.10 U	0.10 U
Pyridine	mg/L	5	0.10 U	0.10 U
Metals, TCLP				
Arsenic	mg/L	5	0.010 U	0.010 U
Barium	mg/L	100	2.0	2.7
Cadmium	mg/L	1	0.11	0.14
Chromium	mg/L	5	0.0033	0.0029
Lead Mercury	mg/L mg/L	5 0.2	0.50 0.00020 U	2.8 0.00020 U
Selenium	mg/L	1	0.0020 U	0.0020 U
Silver	mg/L	5	0.0050 U	0.0050 U
Pesticides/PCBs, TCLP	J			
Chlordane, technical	mg/L	0.03	0.0050 U	0.0050 U
Endrin	mg/L	0.02	0.00050 U	0.00050 U
gamma-BHC (lindane)	mg/L	0.4	0.00050 U	0.00050 U
Heptachlor	mg/L	0.008	0.00050 U	0.00050 U
Heptachlor epoxide	mg/L	0.008	0.00050 U	0.00050 U
Methoxychlor Toxaphene	mg/L	10	0.00050 U 0.025 U	0.00050 U
·	mg/L	0.5	0.025 0	0.025 U
Herbicides, TCLP				
2,4,5-TP (Silvex)	mg/L	1	0.010 U	0.010 U
2,4-Dichlorophenoxyacetic acid (2,4-D)	mg/L	10	0.010 U	0.010 U
Wet Chemistry	0/		07.0	04.4
Total solids	% °F	 -140	87.6	91.1 >230
Ignitability Phenolics (total)	mg/kg	<140 	>230 2.8 U	>230 2.7 U
Cyanide	mg/kg		0.13 UJ†	0.13 UJ†
Reactive cyanide	mg/kg	250	1.7 U	1.6 U
Reactive sulfide	mg/kg	500	57 U	54 U
Total solids	mg/kg		866000	907000
Paint filter	mL/100g		0.50 U	0.50 U
рН	S.U.	>2 and <12	8.3	8.1
Geotechnical Parameters	, .			
Bulk density	g/mL		1.3	1.3
Notes:				

Notes: U - Not detected at the associated reporting limit mg/L - milligrams per liter mg/kg - milligrams per kilogram J - Estimated concentration

[†]Analysis performed past the recommended holding time

Table 7 Page 1 of 1

Analytical Results Summary of RCRA Parameters, August 2015 Soil Sampling North Pile

Behr Peoria Inc, 2424 West Clark Street, Peoria, Illinois

Location ID: Sample Name: Sample Date: Elevation (feet above concrete pad):			51 S-082715-GW-51 8/27/2015 6	53 S-082715-GW-53 8/27/2015 6
		RCRA-TCLP Hazardous Waste Criteria	·	·
Parameters	Units	а		
Volatile Organic Compounds				
Total organic halides (TOX)	mg/kg		24.3	37.7
Volatile Organic Compounds, TCLP 1,1-Dichloroethene	mg/L	0.7	0.20 U	0.20 U
1,2-Dichloroethane	mg/L	0.5	0.20 U	0.20 U
1,4-Dichlorobenzene	mg/L	7.5	0.20 U	0.20 U
2-Butanone (Methyl ethyl ketone) (MEK)	mg/L	200	1.0 U	1.0 U
Benzene	mg/L	0.5	0.10 U	0.10 U
Carbon tetrachloride Chlorobenzene	mg/L mg/L	0.5 100	0.20 U 0.20 U	0.20 U 0.20 U
Chloroform (Trichloromethane)	mg/L	6	0.20 U	0.20 U
Tetrachloroethene	mg/L	0.7	0.20 U	0.20 U
Trichloroethene	mg/L	0.5	0.20 U	0.20 U
Vinyl chloride	mg/L	0.2	0.20 U	0.20 U
Semivolatile Organic Compounds, TCLP)			
1,4-Dichlorobenzene	mg/L	7.5	0.050 U	0.050 U
2,4,5-Trichlorophenol	mg/L	400	0.10 U	0.10 U
2,4,6-Trichlorophenol	mg/L	2	0.10 U	0.10 U
2,4-Dinitrotoluene	mg/L	0.13	0.10 U	0.10 U
2-Methylphenol 3&4-Methylphenol	mg/L	200 200	0.10 U 0.10 U	0.10 U 0.10 U
Hexachlorobenzene	mg/L mg/L	0.13	0.10 U	0.050 U
Hexachlorobutadiene	mg/L	0.5	0.050 U	0.050 U
Hexachloroethane	mg/L	3	0.050 U	0.050 U
Nitrobenzene	mg/L	2	0.050 U	0.050 U
Pentachlorophenol	mg/L	100	0.10 U	0.10 U
Pyridine	mg/L	5	0.10 U	0.10 U
Metals, TCLP		_		
Arsenic	mg/L	5	0.010 U	0.010 U
Barium Cadmium	mg/L	100	2.3 0.19	2.5 0.13
Chromium	mg/L mg/L	1 5	0.0035	0.13
Lead	mg/L	5	0.25	4.8
Mercury	mg/L	0.2	0.00020 U	0.00020 U
Selenium	mg/L	1	0.025 U	0.025 U
Silver	mg/L	5	0.0050 U	0.0050 U
Pesticides/PCBs, TCLP				
Chlordane, technical	mg/L	0.03	0.0050 U	0.0050 U
Endrin	mg/L	0.02	0.00050 U	0.00050 U
gamma-BHC (lindane) Heptachlor	mg/L mg/L	0.4 0.008	0.00050 U 0.00050 U	0.00050 U 0.00050 U
Heptachlor epoxide	mg/L	0.008	0.00050 U	0.00050 U
Methoxychlor	mg/L	10	0.00050 U	0.00050 U
Toxaphene	mg/L	0.5	0.025 U	0.025 U
Herbicides, TCLP				
2,4,5-TP (Silvex)	mg/L	1	0.010 U	0.010 U
2,4-Dichlorophenoxyacetic acid (2,4-D)	mg/L	10	0.010 U	0.010 U
Wet Chemistry				
Total solids	%		87.3	89.5
Ignitability	°F	<140	>230	>230
Phenolics (total)	mg/kg		2.7 U	2.7 U
Reactive cyanide Reactive sulfide	mg/kg	250 500	1.7 U	1.7 U
Reactive suifide Total solids	mg/kg mg/kg	500 	57 U 883000	55 U 892000
Paint filter	mg/kg mL/100g		0.50 U	0.50 U
pH	S.U.	>2 and <12	8.0	8.2
·		1 6		
Geotechnical Parameters Bulk density	g/mL		1.1	1.2
Dain actions	g/IIIL		1.1	1.2
Notes:				

J - Estimated concentration

mg/L - milligrams per liter mg/kg - milligrams per kilogram

Notes: U - Not detected at the associated reporting limit

Appendices GHD | Report for Behr Peoria, Inc. –Work Plan for Self-Implementing On-Site Cleanup and Disposal of PCB Remediation Waste | 11103179 (2)

Appendix A 2014 PCB Remediation Waste Characterization and Disposal Plan

PCB REMEDIATION WASTE CHARACTERIZATION AND DISPOSAL PLAN BEHR PEORIA, INC. 2424 CLARK STREET PEORIA, ILLINOIS

Prepared for: Behr Iron and Metal 1100 Seminary Street Rockford, Illinois 61105

Prepared by:

Tephra Environmental Compliance LLC

Tephra Project No.: 14005

November 2014

Table of Contents

INTRODUCTION	1
Purpose	1
Background	
Statistical Analysis of Pilot Data	
PCB REMEDIATION WASTE CHARACTERIZATION AND DISPOSAL PLAN	4
REMEDIATION WASTE PILE CHARACTERIZATION	4
Health and Safety	4
Sampling Plan Implementation	
Sampling Procedures	
Decontamination Procedures	
Data Evaluation	
PCB REMEDIATION WASTE DISPOSAL	
Landfill Waste Stream Characterization Samples	6
Health and Safety	
Site Control	
Disposal	
Decontamination	
Confirmatory Concrete Pad Sampling	
Reporting	

FIGURES

Figure 1 – Site Location

Figure 2 – Location of PCB Remediation Waste

Figure 3 – Soil Sampling Plan for Statistical Analysis

TABLE

Table 1 – May 2010 Soil Analytical Results (Data for Statistical Analysis)

ATTACHMENTS

Attachment A – Site Photographs

Attachment B – Turnings Pit Construction Plan

Attachment C - Analytical Reports

PCB REMEDIATION WASTE CHARACTERIZATION AND DISPOSAL WORK PLAN BEHR PEORIA, INC. 2424 CLARK STREET PEORIA, ILLINOIS

INTRODUCTION

Purpose

The purpose of this polychlorinated biphenyl (PCB) Waste Characterization and Disposal Plan (Work Plan) is to provide background information and to perform characterization of PCB-impacted material in accordance with Title 40 of the United States Code of Federal Regulations (40 CFR) Chapter I, Section 761.61(a) Self-implementing on-site cleanup and disposal of PCB remediation waste for off-site disposal in accordance with local, federal and state regulations.

This Work Plan has been prepared to outline waste characterization activities required prior to the disposal of approximately 1,300 cubic yards of material excavated from a concrete pit at the Behr Peoria, Inc. facility, 2424 Clark Street, Peoria, Illinois (hereinafter referred to as the "Site"). **Figure 1** depicts the location of the Site. **Figure 2** depicts the location of the staged PCB remediation waste.

Background

The material was removed during a 2010 renovation of an approximate 100-foot x 40-foot x 9-foot concrete-lined pit by the site tenant, Behr Peoria, Inc. The concrete pit, previously containing processing equipment, was filled prior to tenant occupancy by others with an apparent mixture of auto fluff, soils and gravel (waste). The source of the materials is unknown, but suspected to originate from pre-1978 metal salvaging operations on-site by the former occupant (and current owner of the property), IBS, Inc. because the material is consistent with components that appear to be auto fluff. Although the material was most likely generated in relation to vehicle dismantling (auto fluff), in accordance with 40 CFR Part 761, Subpart D, the material is classified as PCB Remediation Waste as it contains soil and stone and was as a result of "unauthorized disposal."

The material was excavated using an on-site backhoe and placed on a concrete pad situated adjacent to the concrete pit. The material was covered with impermeable sheeting and secured to prevent human exposure, infiltration and/or runoff. Photographs of the material are included in **Attachment A**.

The concrete pit was renovated into a 30-mil polyvinyl chloride (PVC)-lined metal turnings pit topped with a 10-inch concrete pad. Photographs of the metal turnings pit are included in **Attachment A** and the metal turnings pit construction plan is included in **Attachment B**.

Four soil samples were obtained from the waste material (one (1) in February of 2010 and three (3) in March of 2010). The soil sample obtained in February was evaluated for Toxic Characteristic Leaching Procedure (TCLP) volatiles, semi-volatiles, metals and total PCBs. The results of this sample did not identify any contaminants of concern above regulatory limits for disposal in a Subtitle D landfill. The soil sample results obtained in March 2010 for total PCB analysis identified a PCB concentration above 50 parts per million (ppm) in one (1) of three (3) random samples obtained from the excavation pile. The total concentration of PCBs in the sample was 57 ppm.

The February 2010 soil sample was submitted under a chain of custody to First Environmental, Inc., a NELAC certified laboratory Accreditation Program (IL ELAP) in Naperville, Illinois. The March 2010 soil grab samples were submitted under a chain of custody to TestAmerica Laboratories, Inc., a NELAC (IL ELAP) certified laboratory, in University Park, Illinois. Copies of the laboratory analytical reports are included in **Attachment C**.

Subsequently, in accordance with discussions between the US EPA (Mr. Ken Zolnierzcyk, Environmental Engineer for the Chemical Management Branch, and Dr. Arthur Lubin, Expert Statistician) and Shaw Environmental Inc. (Shaw) (Bernadette Scheller, PG), on May 3, 2010, Shaw and Behr Iron and Metal performed sampling and analysis of the stockpiled material for the purpose of performing statistical analyses. The sampling and analysis was performed in accordance with a work plan recommended by Mr. Zolnierzcyk and Dr. Lubin. The following is a summary of the work plan.

The waste pile (approximately $120^{\circ} \times 60^{\circ} \times 5^{\circ}$) was divided into four (4) 'quadrants', each with four (4) sections, as illustrated in **Figure 3**. One (1) section within each quadrant was selected as a "pilot" section (total of four (4) pilot sections). Within the pilot section, four (4) soil grab samples were obtained utilizing a backhoe and bucket. Remnant soils from the sampling process were returned to the point of origin utilizing the backhoe bucket.

The soil samples were placed in laboratory provided 4-ounce jars in accordance with EPA publication SW-846, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (EPA Publication SW-846) and labeled according to their location. For example, the sample obtained from the northwest corner of Section 2 was labeled S-2 NW.

The sample jars were immediately placed in a cooler on ice for the duration of the day. The samples were kept on ice until relinquished to the contract laboratory, First Environmental, Inc. of Naperville, Illinois. The samples were logged on a chain of custody. Laboratory Analytical Reports are included in **Attachment C**. The laboratory analytical results are summarized in **Table 1**.

All sampling equipment was decontaminated and personal protective equipment and decontamination material used in sampling and decontamination were disposed of in accordance with 40 CFR §761.61(a)(5)(v).

Statistical Analysis of Pilot Data

In accordance with EPA recommendations, the data obtained from the pilot sections were used for statistical analyses to determine the number of samples required to characterize the PCB remediation waste for disposal. **Table 1** includes the analytical data, pilot section mean data and sample variance used for statistical analyses.

The data from the pilot study was used in accordance with the following formula provided by Dr. Arthur Lubin of the US EPA:

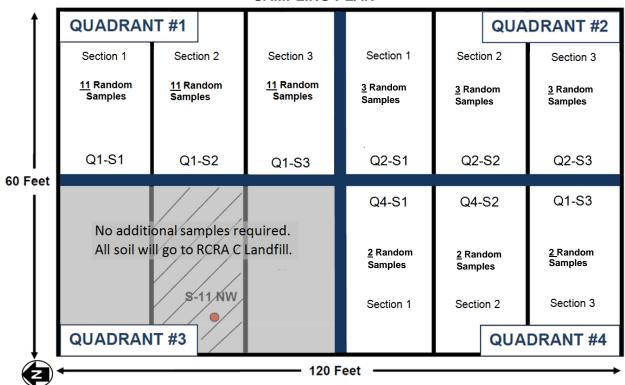
$$n = \frac{(z_{1-\alpha} + z_{1-\beta})^2 s^2}{(z_{1-\alpha})^2} + \frac{1}{2} z_{1-\alpha}^2$$

Where:

n = Number of Samples

 $Z_{1-\alpha}$ = Probability of False Positive (0.05 = 1.645)

 Z_{1-B} = Probability of False Negative (0.10 = 1.282)


 s^2 = Sample Variance per quarter of pilot test samples

IA2 = Inaccuracy Level (10 ppm)

QUADRANT #1	$n=((1.645+1.282)^2 * 107.23)/10^2 + 0.5(1.645^2) = 10.54 $ Samples
QUADRANT #2	$n=((1.645+1.282)^2 * 16.72)/10^2 + 0.5(1.645^2) = 2.79 $ Samples
QUADRANT #3	$n=((1.645+1.282)^2 * 318.23)/10^2 + 0.5(1.645^2) = 28.62 $ Samples
QUADRANT #4	n=((1.645+1.282)^2 * 6.39)/10^2 + 0.5(1.645^2) = 1.90 Samples

The pilot data results indicate that Quadrant #1 will require eleven (11) samples per section (total of 33 samples), Quadrant #2 will require three (3) samples per section (total of 9 samples), and Quadrant #4 will require two (2) samples per section (total of 6 samples). During the pilot study one (1) sample in Quadrant #3 was found to have total concentrations of PCBs of 60.3 ppm. Accordingly, all of Quadrant #3 will be disposed of as hazardous waste in a Resource Conservation and Recovery Act (RCRA) Subtitle C landfill (landfill authorized to accept hazardous waste for disposal) and no further sampling will be performed. A graphic representation of the PCB remediation waste sampling plan is shown below.

PCB REMEDIATION WASTE PILE SAMPLING PLAN

PCB REMEDIATION WASTE CHARACTERIZATION AND DISPOSAL PLAN

REMEDIATION WASTE PILE CHARACTERIZATION

Health and Safety

Prior to initiating field activities, a Site-specific Health and Safety Plan (HSP) will be prepared in accordance with the Occupational Safety and Health Administration (OSHA) Standard Hazardous Waste Operations and Emergency Response Guidelines, 29 CFR 1910.120. All personnel associated with the project will review, sign, and comply with the HSP at all times while on-site. Exposure to PCBs via dust/soil will be mitigated via implementation of water suppression activities and donning proper personal protective equipment as outlined in the HSP. Water suppression activities will be performed in a manner that does not cause runoff from the waste pile.

Sampling Plan Implementation

An environmental subcontractor will be commissioned to do the work. A Tephra Environmental Compliance LLC (TEC) environmental scientist will be on-site to monitor and document all on-site activities. The excavated material will be spread out approximately five (5) feet thick over an approximate 7,200 square-foot concrete-covered area (approximately sixty (60) feet by one-hundred twenty (120) feet) with the exception of Quadrant #3 which will remain in-place. There will be an approximate two (2) foot separation between quadrants. The material will be wetted as needed to prevent dust exposure. The scope of work includes obtaining forty-eight (48) grab samples from three (3) of the four (4) quadrants (Quadrant #1, Quadrant #2, and Quadrant #4). Two (2) duplicate samples for Quality Assurance/Quality Control (QA/QC) will be additionally collected. (A total of fifty (50) samples will be obtained.)

Sampling Procedures

- 1. Spread PCB remediation waste on concrete pad to approximate dimensions of sixty (60) feet to one-hundred twenty (120) feet, with the exception of Quadrant #3, which will be left in place.
- 2. Create grid over pile to define the three (3) quadrants, and the three (3) sections within each quadrant.
- 3. Systematically obtain samples from each section as outlined in the PCB Remediation Waste Sampling Plan and in accordance with sampling and handling procedures outlined in EPA Publication SW-846.
- 4. Immediately containerize samples, label, log on chain of custody form and place in cooler on ice.
- 5. Cover material with visqueen or other impermeable service, and secure to prevent exposure or run-off of material.
- 6. Perform decontamination of sampling equipment in accordance with 40 CFR Part 761.
- 7. Submit samples under chain of custody to contract laboratory at the earliest opportunity.

The samples will be obtained using hand samplers (e.g., decontaminated hand trowels). A backhoe bucket will also be used to provide access to deeper samples. Only the bucket of the backhoe, hand samplers and concrete pad will be in direct contact of the material. The samples will be taken directly from the waste pile and from the bucket. The remaining material in the bucket will be placed back into its respective section.

The soil samples will be placed in 4-ounce jars and labeled according to their location. For example the first random sample obtained from Section 1 of Quadrant #1 will be labeled Q1-S1-

1. The second random sample obtained from Section 1 of Quadrant #1 will be labeled Q1-S1-2, and so on.

The following notations will be placed on the jar:

- Date
- Time of Sample
- Scientists Initials
- Client's Name
- Sample ID.

The sample jars will be immediately placed in a cooler on ice for the duration of the day. The samples will be kept on ice until relinquished to the contract laboratory under a chain of custody.

Decontamination Procedures

Prior to use at a Site and between sampling locations, the sampling equipment will be decontaminated. Decontamination of sampling tools will consist of washing the equipment in a solution of potable water and a non-phosphate detergent. Washed equipment will be rinsed with distilled water. The purpose of decontamination is to prevent potential cross-contamination between sampling locations.

After all field sampling is complete the sampling equipment and backhoe bucket will be decontaminated. In accordance with 40 CFR Part 761, decontamination will performed by swabbing surfaces that have contacted PCBs with a solvent; and double washing/rinsing as defined in Subpart S of Part 761. The double-wash-rinse procedure involves an initial water/detergent or solvent wash to clean the affected surfaces, a potable water rinse to remove residuals left from the initial wash, a solvent wash to decontaminate PCBs, and a final solvent rinse to clean and rinse the surface. Solvents such as kerosene, diesel, or terpene hydrocarbons that meet the performance-based organic decontamination fluid requirement of the regulations are acceptable. All cleanup rags, gloves, or other such items used for decontamination will be containerized and disposed of in a permitted, licensed landfill. All decontamination fluids, will be recovered, containerized and disposed of in accordance with local, state and federal regulations.

Data Evaluation

Upon the receipt and review of the laboratory analytical data, it will be determined which of the quadrants can be disposed of in a Subtitle D landfill (e.g., if <u>all</u> of the soil samples from the quadrant have concentrations of total PCBs < 50 ppm the quadrant may be disposed of in a Subtitle D landfill). If <u>any</u> of the samples within a quadrant exhibit concentrations of PCBs ≥50ppm, all the material in the quadrant will be handled as PCB remediation waste as outlined 40 CFR Part 761.61 *PCB Remediation Waste, (a) Self-Implementing on-site cleanup and disposal of PCB remediation waste* and will be disposed of at Heritage Environmental Services, LLC, landfill located at 4370 West County Rout 1275 North, Roachdale, Indiana in accordance with the following disposal work plan.

PCB REMEDIATION WASTE DISPOSAL

Landfill Waste Stream Characterization Samples

Prior to waste disposal activities, three (3) waste stream characterization samples will be obtained from the waste pile. The samples will be collected, containerized, and submitted to the contract laboratory in accordance with EPA Publication SW-846 and evaluated for pH, Reactivity (cyanide/sulfide), Flash point, Toxic Characteristic Leaching Procedure (TCLP) metals, TCLP volatiles, TCLP semi-volatiles, Total or TCLP herbicides and TCLP pesticides (RCRA D001-D043 waste characteristics). Four (4) total sample results will be provided to the contract landfill(s) (the three (3) samples obtained in 2014 and the one (1) sample obtained in 2010.)

Health and Safety

Prior to initiating field activities, a Site-specific Health and Safety Plan (HSP) will be prepared in accordance with the Occupational Safety and Health Administration (OSHA) Standard Hazardous Waste Operations and Emergency Response Guidelines, 29 CFR 1910.120. All onsite personnel associated with the project will review, sign, and comply with the HSP at all times while on-site. Exposure to PCBs via dust/soil will be mitigated via implementation of water suppression activities and donning proper personal protective equipment as outlined in the HSP. Water suppression activities will be performed in a manner that does not cause runoff from the waste pile.

Site Control

Prior to commencing excavation and disposal activities at the Site, the environmental subcontractor will implement Site Control Measures. Site Control will include establishing work zones (an Exclusion Zone, Contamination Reduction Zone, and Support Zone), enforcing of safe work practices (in accordance with the Site HSP), and securing the Site when operations have ceased for the day.

Site Control will include lining the Contamination Reduction Zone with visqueen or other impermeable surface for loading of the trucks. Any material that may be spilled during loading will be returned to a quadrant that will be disposed of at the RCRA C landfill. The disposal trucks will be inspected prior to leaving the area to assure contamination remains on-site. Decontamination procedures in accordance with 40 CFR Part 761 will be used if warranted upon the results of the truck inspections.

Disposal

Pile Materials with < 50 ppm total PCBs

Waste pile materials that have been found to have < 50 ppm concentrations of total PCBs will be excavated and disposed of first. If all of the samples from a quadrant have concentrations of total PCBs < 50 ppm, the material from this quadrant will be excavated with a backhoe and placed in trucks, and transported to a Subtitle D landfill under manifest.

Pile Materials with ≥ 50 ppm total PCBs

Waste pile materials that have been found to have concentrations ≥ 50 ppm total PCBs will be excavated and loaded into trucks and transported to Heritage Environmental Services, LLC, landfill (HES) located at 4370 West County Route 1275 North, Roachdale, Indiana, a RCRA Subtitle C landfill.

Excavation and disposal of the material is expected to take several days. Each day, prior to exiting the Site, the environmental subcontractor will cover the waste pile with visqueen or another impermeable surface, and secure it to prevent infiltration or runoff of materials from the Exclusion Zone.

Decontamination

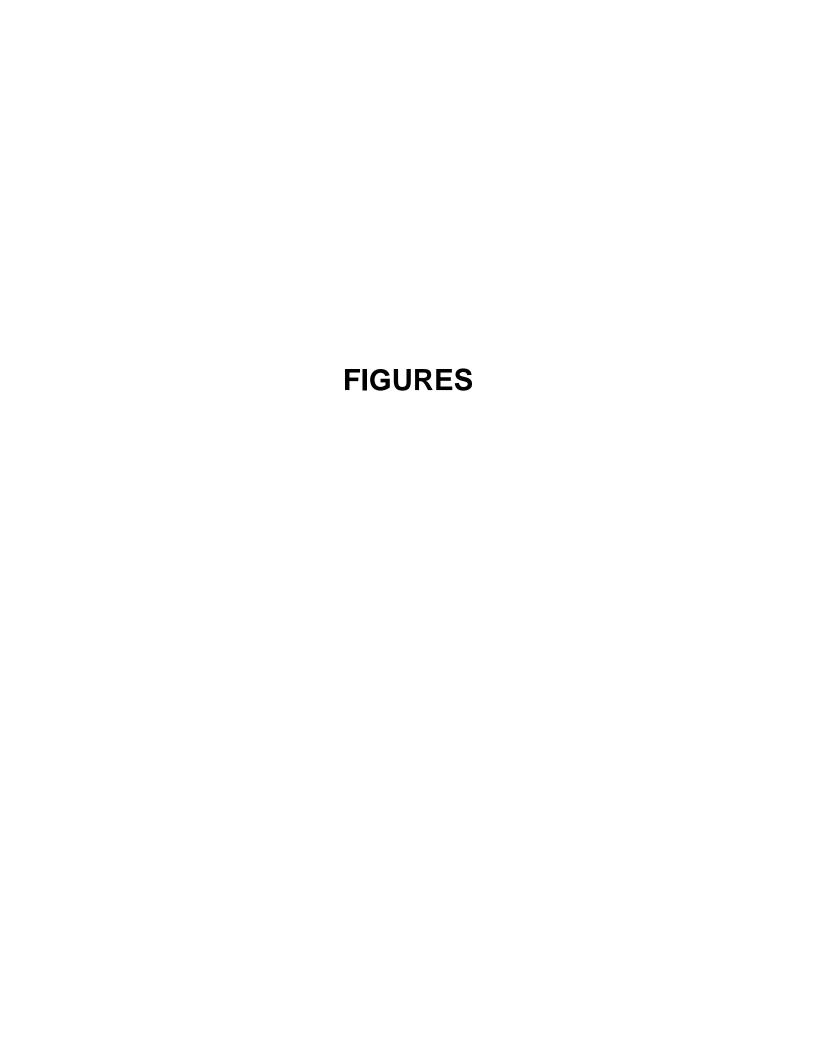
Upon complete excavation of the waste pile the backhoe bucket will be decontaminated in accordance with 40 CFR Part 761, by swabbing surfaces that have contacted PCBs with a solvent and double washing/rinsing as defined in Subpart S of Part 761. The double-wash-rinse procedure involves an initial water/detergent or solvent wash to clean the affected surfaces, a potable water rinse to remove residuals left from the initial wash, a solvent wash to decontaminate PCBs, and a final solvent rinse to clean and rinse the surface. Solvents such as kerosene, diesel, or terpene hydrocarbons that meet the performance-based organic decontamination fluid requirement of the regulations are acceptable. All cleanup rags, gloves, or other such items used for decontamination will be containerized and disposed of in a permitted, licensed landfill. All decontamination fluids, will be recovered, containerized and disposed of in accordance with local, state and federal regulations.

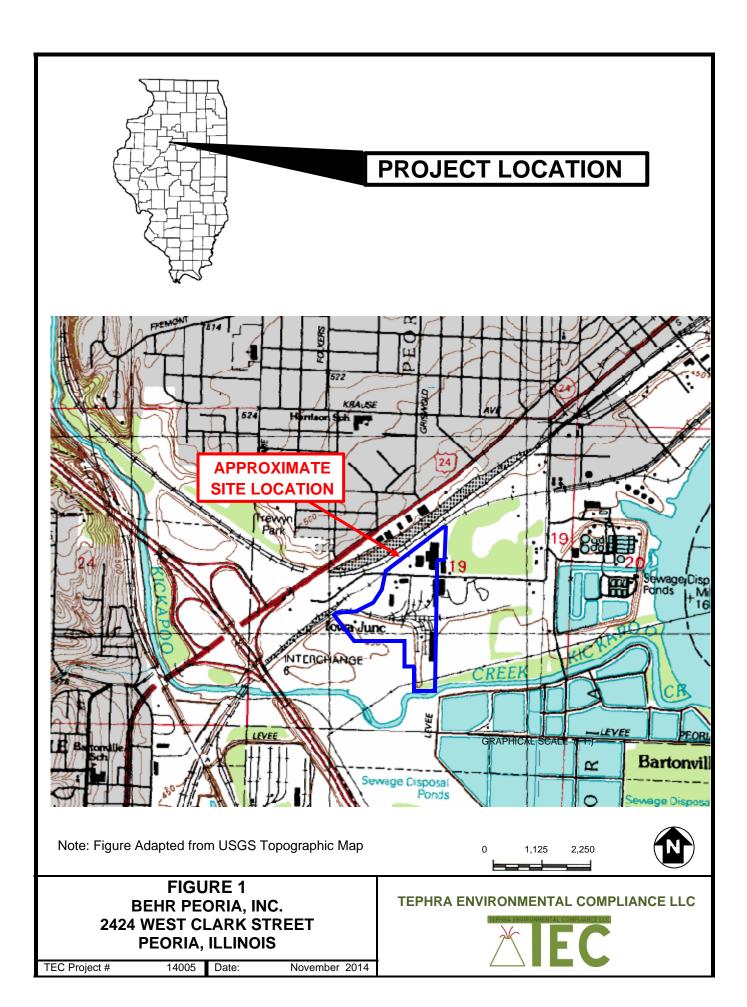
Remaining fines left on the concrete pad will be collected (swept or vacuumed) and placed in the final truck bound for HES Landfill. After the concrete pad is cleaned of fines it will be pressure-washed. An impermeable barrier will be installed (e.g. polyethylene sheeting over berms) on the pad to prevent wash water from leaving the remediation zone. The wash water will be collected via a drum vacuum unit and deposited into 55-gallon drums. A sample of the decontamination water will be analyzed for PCBs, and disposed of in accordance with the analytical results.

All materials used in cleaning the concrete pad will be decontaminated and/or disposed of as indicated in 761.61.

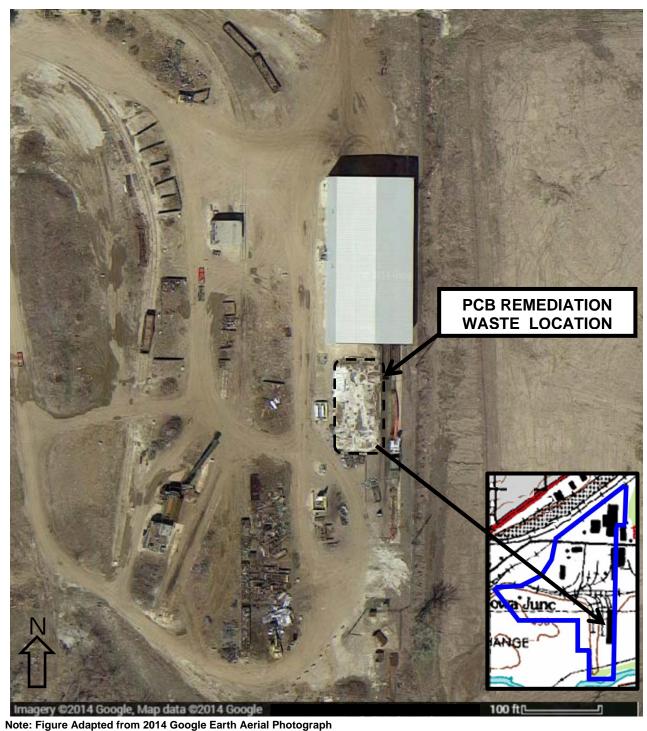
Confirmatory Concrete Pad Sampling

Following Subpart O – Sampling to Verify Completion of Self-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance with 761.61(a)(6), three (3) concrete samples will be obtained from below where the waste pile is located. The samples will be obtained from the 0 to 0.5" interval (below top of pad) at random locations on the concrete pad or where visual evidence of PCB impact is present. The samples will be taken with decontaminated equipment (e.g., concrete chisel) and placed in 4-ounce jars and labeled (e.g. CP-1, CP-2, and CP-3).


The following notations will be placed on the jar:


- Date
- Time of Sample
- Scientists Initials
- Client's Name
- Sample ID.

The sample jars will be immediately placed in a cooler on ice for the duration of the day. The samples will be kept on ice until relinquished to the contract laboratory. The samples will be logged on a chain of custody and their locations will be documented.


Reporting

Upon receipt of the final confirmatory concrete pad analytical results, a summary report will be prepared documenting all remedial activities included in the PCB Remediation Characterization and Disposal Work Plan.

FIGURE 2 PCB REMEDIATION WASTE LOCATION

BEHR PEORIA, INC. **2424 WEST CLARK STREET** PEORIA, ILLINOIS

TEC Project# 14005 DATE:

November 2014

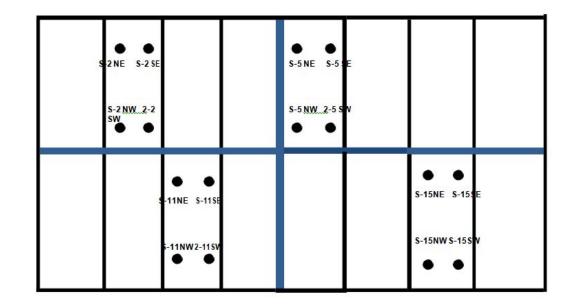
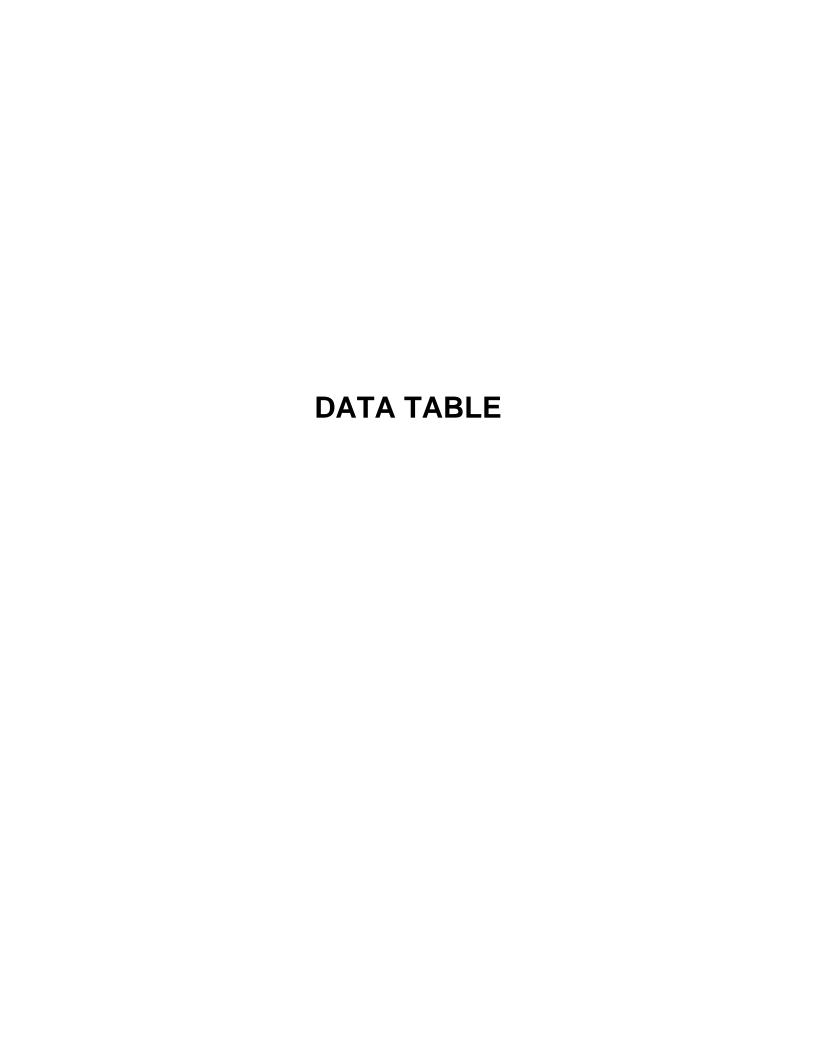

TEPHRA ENVIRONMENTAL COMPLIANCE LLC

FIGURE 3 SOIL SAMPLING PLAN FOR STATISTICAL ANALYSIS

60 FEET



BEHR PEORIA, INC. 2424 WEST CLARK STREET PEORIA, ILLINOIS

TEC Project# 14005 DATE: November 2014

TEPHRA ENVIRONMENTAL COMPLIANCE LLC

SOIL ANALYTICAL RESULTS

PCBS

BEHR PEORIA, INC. 2424 West Clark Street Peoria, Illinois

-			S-2 NE	S-2 NW	S-2 SE	S-2 SW	S-5 NE	S-5 NW	S-5 SE	S-5 SW	C 44 NE	S-11 NW	S-11 SE	S-11 SW	S-15 NE	S-15 NW	S-15 SE	S-15 SW
Bei	hr Peoria			3-2 NVV	3-2 SE	3-2 SVV	3-3 NE	2-2 MAA	3-3 SE	3-3 SW	S-11 NE	3-11 NW	3-11 SE	3-11 SW	3-15 NE	3-13 NW	3-13 SE	3-13 SW
		ample Collection:		5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010	5/3/2010
	Time of S	ample Collection:	1:19 PM	1:32 PM	1:23 PM	1:28 PM	1:36 PM	1:44 PM	1:39 PM	1:41 PM	1:48 PM	1:56 PM	1:51 PM	1:54 PM	1:58 PM	2:06 PM	2:01 PM	2:04 PM
First En	vironment	al Lab. Numbers:	10-1698-001	10-1698-002	10-1698-003	10-1698-004	10-1698-005	10-1698-006	10-1698-007	10-1698-008	10-1698-009	10-1698-010	10-1698-011	10-1698-012	10-1698-013	10-1698-014	10-1698-015	10-1698-016
Contaminants of Conce	ern:																	
Polychlorinated biphe	enyls (PCI	Bs) (8082)																
Date Analyzed:	Units	Rep. Limit	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010	5/5/2010
Aroclor 1016	mg/kg	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Aroclor 1221	mg/kg	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Aroclor 1232	mg/kg	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Aroclor 1242	mg/kg	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
Aroclor 1248	mg/kg	0.4	10.2	10.9	21.9	6.87	8.24	13.2	10.8	14.3	9.14	22.1	12.3	11.9	11.1	11.4	11.3	9.42
Aroclor 1254	mg/kg	0.8	15.9	29.3	11.7	9.22	10.5	14	11.5	12.1	14.3	35.8	12.7	0.8	15.6	16.3	15.6	12.7
Aroclor 1260	mg/kg	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	7.33	0.8	0.8	0.8	0.8
		TOTAL PCBS	28.5	42.6	36	18.49	20.74	29.6	24.7	28.8	25.84	60.3	27.4	21.63	29.1	30.1	29.3	24.52
MEAN OF EACH S	SECTION			31.	.40			25	.96			33	.79			28	.26	
SQUARED DIFF	ERENCE	(Xi - M)^2	8.40	125.50	21.18	166.60	27.25	13.25	1.59	8.07	63.24	702.65	40.86	147.93	0.71	3.40	1.09	13.95
	<u> </u>																	
		Sum (Xi-M)^2		321	.68			50	.15			954	1.68			19	.16	
SAMPLE VA	RIANCE	sum (Xi-M)^2/N-1		107	.23			16	.72			318	3.23			6.	39	
POPULATION VARIA	NCE	sum (Xi-M)^2/N		80.	.42			12	.54			238	3.67			4.	79	

Data collected by Shaw Environmental, Inc.

ATTACHMENT A SITE PHOTOGRAPHS

SITE PHOTOGRAPHS

1.

Comments: View looking north of waste pile and turnings pit location.

2.

Comments: View of waste pile.

BEHR PEORIA, INC. 2424 WEST CLARK STREET PEORIA, ILLINOIS TEPHRA ENVIRONMENTAL COMPLIANCE LLC

TEC PROJECT# 14005 DATE PHOTOGRAPHS TAKEN: APRIL 2010

SITE PHOTOGRAPHS

3.

Comments: View looking toward northeast of 30-mil PVC liner installed during pit construction.

4.

Comments: View looking toward southwest of completed turnings pit. Base is 10 inches of concrete overlying the PVC liner and sand.

BEHR PEORIA, INC. 2424 WEST CLARK STREET PEORIA, ILLINOIS TEPHRA ENVIRONMENTAL COMPLIANCE LLC

TEC PROJECT# 14005 DATE PHOTOGRAPHS TAKEN: MAY 2010

ATTACHMENT B METAL TURNINGS PIT CONSTRUCTION PLAN

ATTACHMENT C ANALYTICAL REPORTS

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

March 08, 2010

Mr. Ron Coupar BEHR PEORIA INC 2424 West Clark Street Peoria, IL 61080

Project ID: Open - Soil

First Environmental File ID: 10-0705 Date Received: March 01, 2010

Dear Mr. Ron Coupar:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

All Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met unless otherwise noted. QA/QC documentation and raw data will remain on file for future reference. Our accreditation number is 100292 and our current certificate is number 002205: effective 02/06/09 through 02/28/10.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at (630) 778-1200 or stan@firstenv.com.

Sincerely,

Stan Zaworski\
Project Manager

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

BEHR PEORIA INC

Date Collected: 02/26/10

Project ID:

Open - Soil

Time Collected: 9:00

Sample ID:

Soil & Small Stones

Date Received: 03/01/10

Sample No:

10-0705-001

Date Reported: 03/08/10

Results are reported on an "as received" basis.

Analyte	Re	esult	R.L.	Units	Flags
Percent Total Solids Analysis Date: 03/04/10	Method: 2540B			14	
Total Solids	93	3.18		%	
TCLP Volatiles Method 1311 Analysis Date: 03/04/10	Method: 5030B/8260E	3			
Benzene	< 0.	050	0.050	mg/L	
2-Butanone (MEK)	< 0.	100	0.100	mg/L	
Carbon tetrachloride	< 0.	.050	0.050	mg/L	
Chlorobenzene	< 0.	050	0.050	mg/L	
Chloroform	< 0.	050	0.050	mg/L	
1,2-Dichloroethane	< 0.	050	0.050	mg/L	
1,1-Dichloroethene	< 0.	050	0.050	mg/L	
Tetrachloroethene	< 0.	.050	0.050	mg/L	
Trichloroethene	< 0.	050	0.050	mg/L	
Vinyl chloride	< 0.	100	0.100	mg/L	
TCLP Semi-Volatiles Method 1311 Analysis Date: 03/04/10	Method: 8270C			Method 351 Date: 03/04/10	
1,4-Dichlorobenzene	< 0.	.10	0.10	mg/L	
2,4-Dinitrotoluene	< 0.	10	0.10	mg/L	
Hexachlorobenzene	< 0.	10	0.10	mg/L	
Hexachlorobutadiene	< 0.	10	0.10	mg/L	
Hexachloroethane	< 0.	10	0.10	mg/L	
2-Methylphenol	< 0.	10	0.10	mg/L	
3 & 4-Methylphenol	< 0.	10	0.10	mg/L	
Nitrobenzene	< 0.	10	0.10	mg/L	
Pentachlorophenol	< 0.	.50	0.50	mg/L	
Pyridine	< 0.	50	0.50	mg/L	
2,4,5-Trichlorophenol	< 0.	10	0.10	mg/L	
2,4,6-Trichlorophenol	< 0.	10	0.10	mg/L	
TCLP Metals Method 1311 Analysis Date: 03/04/10	Method: 6010B			Method 301 Date: 03/02/10	
Arsenic	< 0.	002	0.002	mg/L	
Barium	1.	7	1.0	mg/L	
Cadmium	0.	140	0.001	mg/L	
Chromium	< 0.		0.001	mg/L	
Lead		189	0.002	mg/L	
Selenium	< 0.		0.002	mg/L	

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

BEHR PEORIA INC

Date Collected: 02/26/10

Project ID:

Open - Soil

Time Collected: 9:00

Sample ID:

Soil & Small Stones

Date Received:

03/01/10

Sample No:

10-0705-001

Date Reported: 03/08/10

Results are reported on an "as received" basis

Analyte		Result	R.L.	Units	Flags	
TCLP Metals Method 1311 Analysis Date: 03/04/10	Method: 6010B	Preparation Method 3010A Preparation Date: 03/02/10				
Silver		< 0.001	0.001	mg/L		
TCLP Metals Method 1311 Analysis Date: 03/03/10	Method: 7470A					
Mercury		< 0.0005	0.0005	mg/L		
Polychlorinated biphenyls (PCBs) Analysis Date: 03/04/10	Method: 8082		Preparation Method 3540C Preparation Date: 03/02/10			
Aroclor 1016		< 80.0	80.0	ug/kg		
Aroclor 1221		< 80.0	80.0	ug/kg		
Aroclor 1232		< 80.0	80.0	ug/kg		
Aroclor 1242		11,600	80.0	ug/kg		
Aroclor 1248		< 80.0	80.0	ug/kg		
Aroclor 1254		27,700	160	ug/kg		
Aroclor 1260		< 160	160	ug/kg		

CHAIN OF CUSTODY RECORD

First Environmental
Laboratories, Inc.

First Environmental Laboratories

1600 Shore Road, Suite D Naperville, Illinois 60563

Phone: (630) 778-1200 • Fax: (630) 778-1233

24 Hr. Pager (708) 569-7507 E-mail: info@firstenv.com IEPA Certification# 100292

<u></u>				•
- 57	State:	IL	Zip:	61607
(2606)	e-mail:	rcou	park	jbehr.com
			e-mail	*
	(2606)	State:	State: 1L (2606) e-mail: rcou	State: 12 Zip: (2606) e-mail: rcoupar6

EPA Certification# 10	Analyses										
Project I.D.: P.O. #.:		/	35/20	9//		//	//				
Matrix Codes: S:	= Soil W = Water O = Other						//	//	/		
Date/Time Taken	Sample Description	Matrix	1 10							ments /	Lab I.D.
2.26-10 9am	Soil & Small Stones							See	Quote	- Email	10-0705
							-				
							-				
								-			
FOR LAB USE ONLY:											
Cooler Temperature: 0	.1-6°C Yes No°C Sa	ample Refrige	erated: Yes_	No_	Container	s Received	Preserved	: Yes	☐ No		
Received within 6 hrs. Ice Present: Yes N		efrigerator Te 135 Vials Fro:	mperature: zen: Yes N	°C							
			rature:								
Notes and Special Ir	structions:								1000		
										- + ;	
Relinquished By: Z	En Carper Date	ime 2-26	10 11:2	P Receive	d By:	KIC	_	e	Date/Tim	e 3/1/0	1300
Relinquished By:	Date/1	Time		Receive	d By:	- >			Date/Tim	e	
Rev. 4/06						1					

ANALYTICAL REPORT

Job Number: 500-24736-1

Job Description: Waste Characterization

For:

Waste Management 3550 Washington East Peoria, IL 61611

Attention: Steve Matheny

Approved for release Donna L Ingersoll Project Manager II 4/7/2010 3:54 PM

Donna L Ingersoll
Project Manager II
donna.ingersoll@testamericainc.com
04/07/2010

Donno J. Ingersall

cc: Mr. Terry Dixon

These test results meet all the requirements of NELAC for accredited parameters.

The Lab Certification ID# is 100201.

All questions regarding this test report should be directed to the TestAmerica Project Manager whose signature appears on this report. All pages of this report are integral parts of the analytical data. Therefore, this report should be reproduced only in its entirety.

Reporting limits are adjusted for sample size used, dilutions and moisture content if applicable.

TestAmerica Laboratories, Inc.

TestAmerica Chicago 2417 Bond Street, University Park, IL 60484 Tel (708) 534-5200 Fax (708) 534-5211 www.testamericainc.com

Job Narrative 500-24736-1

Comments

No additional comments.

Receipt

All samples were received in good condition within temperature requirements.

GC Semi VOA

Method(s) 8082A: The following samples were diluted due to the abundance of target analytes: STOCKPILE #1-SOIL (500-24736-1), STOCKPILE #2-SOIL (500-24736-3), WALL-SOIL (500-24736-2). Elevated reporting limits (RLs) are provided.

Method(s) 8082A: Due to the level of dilution required for the following samples, surrogate recoveries are not reported: STOCKPILE #1-SOIL (500-24736-1), STOCKPILE #2-SOIL (500-24736-2).

Method(s) 8082: The grand mean exception, as outlined in EPA Method 8000B, was applied to continuing calibration verification (CCV) standards. This rule states that when one or more compounds in the CCV fail to meet acceptance criteria, the data may be reported if the average %D (the grand mean) of all the compounds in the CCV is less than or equal to 15%D. The surrogate recoveries for several CCV's associated with the samples were outside control limits.STOCKPILE #1-SOIL (500-24736-1), STOCKPILE #2-SOIL (500-24736-3), WALL-SOIL (500-24736-2)

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

Organic Prep

No analytical or quality issues were noted.

EXECUTIVE SUMMARY - Detections

Client: Waste Management Job Number: 500-24736-1

Lab Sample ID Analyte	Client Sample ID	Result / Qualifier	Reporting Limit	Units	Method
500-24736-1	STOCKPILE #1-SOIL	-			
PCB-1248 PCB-1254 Percent Moisture Percent Solids		21000 17000 8.1 92	3600 3600 0.10 0.10	ug/Kg ug/Kg % %	8082 8082 Moisture Moisture
500-24736-2	WALL-SOIL				
PCB-1248 PCB-1254 Percent Moisture Percent Solids		16000 18000 9.8 90	890 890 0.10 0.10	ug/Kg ug/Kg % %	8082 8082 Moisture Moisture
500-24736-3	STOCKPILE #2-SOIL				
PCB-1248 PCB-1254 Percent Moisture Percent Solids		37000 20000 12 88	3800 3800 0.10 0.10	ug/Kg ug/Kg % %	8082 8082 Moisture Moisture

METHOD SUMMARY

Client: Waste Management Job Number: 500-24736-1

Description	Lab Location	Method	Preparation Method
Matrix: Solid			
Polychlorinated Biphenyls (PCBs) by Gas Chromatography Automated Soxhlet Extraction	TAL CHI TAL CHI	SW846 8082	SW846 3541
Percent Moisture	TAL CHI	EPA Moisture	

Lab References:

TAL CHI = TestAmerica Chicago

Method References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

METHOD / ANALYST SUMMARY

Client: Waste Management Job Number: 500-24736-1

Method	Analyst	Analyst ID
SW846 8082	Standish, Lyndsey M	LMS
EPA Moisture	Kolarczyk, Paul F	PFK

SAMPLE SUMMARY

Client: Waste Management Job Number: 500-24736-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
500-24736-1	STOCKPILE #1-SOIL	Solid	03/30/2010 1045	03/31/2010 1000
500-24736-2	WALL-SOIL	Solid	03/30/2010 1050	03/31/2010 1000
500-24736-3	STOCKPILE #2-SOIL	Solid	03/30/2010 1055	03/31/2010 1000

SAMPLE RESULTS

Analytical Data

Job Number: 500-24736-1 Client: Waste Management

Client Sample ID: STOCKPILE #1-SOIL

Lab Sample ID: 500-24736-1 Date Sampled: 03/30/2010 1045

Client Matrix: Solid % Moisture: 8.1 Date Received: 03/31/2010 1000

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: 8082 Analysis Batch: 500-83387 Instrument ID: INST31-32 Preparation: 3541 Prep Batch: 500-83118 Initial Weight/Volume: 15.1337 g Dilution: 100 Final Weight/Volume: 10.0 mL Date Analyzed: 04/06/2010 1233 Injection Volume: 1 uL Date Prepared: 03/31/2010 2215 Result Type: **PRIMARY**

Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier RLPCB-1016 3600 <3600 PCB-1221 <3600 3600 PCB-1232 <3600 3600 PCB-1242 <3600 3600 PCB-1248 21000 3600 PCB-1254 17000 3600 PCB-1260 <3600 3600

Surrogate	%Rec	Qualifier	Acceptance Limits
Tetrachloro-m-xylene	0	D	32 - 110
DCB Decachlorobiphenyl	0	D	38 - 140

Client: Waste Management Job Number: 500-24736-1

Client Sample ID: **WALL-SOIL**

Lab Sample ID: 500-24736-2 Date Sampled: 03/30/2010 1050

Client Matrix: Solid % Moisture: 9.8 Date Received: 03/31/2010 1000

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: 8082 Analysis Batch: 500-83387 Instrument ID: INST31-32 3541 Prep Batch: 500-83118 Preparation: Initial Weight/Volume: 15.6874 g Dilution: Final Weight/Volume: 50 5.0 mL Date Analyzed: 04/06/2010 0908 Injection Volume: 1 uL

Date Prepared: Result Type: 03/31/2010 2215 **PRIMARY**

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
PCB-1016		<890		890
PCB-1221		<890		890
PCB-1232		<890		890
PCB-1242		<890		890
PCB-1248		16000		890
PCB-1254		18000		890
PCB-1260		<890		890
Surrogate		%Rec	Qualifier	Acceptance Limits
Tetrachloro-m-xylene		0	D	32 - 110
DCB Decachlorobiphenyl		0	D	38 - 140

Client: Waste Management Job Number: 500-24736-1

Client Sample ID: STOCKPILE #2-SOIL

Lab Sample ID: 500-24736-3 Date Sampled: 03/30/2010 1055

Client Matrix: Solid % Moisture: 12.3 Date Received: 03/31/2010 1000

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Method: 8082 Analysis Batch: 500-83387 Instrument ID: INST31-32 Prep Batch: 500-83118 Preparation: 3541 Initial Weight/Volume: 15.1473 g Dilution: 200 Final Weight/Volume: 5.0 mL Date Analyzed: 04/06/2010 1247 Injection Volume: 1 uL

Date Prepared: Result Type: 03/31/2010 2215 **PRIMARY**

Analyte	DryWt Corrected: Y	Result (ug/Kg)	Qualifier	RL
PCB-1016		<3800		3800
PCB-1221		<3800		3800
PCB-1232		<3800		3800
PCB-1242		<3800		3800
PCB-1248		37000		3800
PCB-1254		20000		3800
PCB-1260		<3800		3800
Surrogate		%Rec	Qualifier	Acceptance Limits
Tetrachloro-m-xylene		0	D	32 - 110

Surrogate	%Rec	Qualifier	Acceptance Limits
Tetrachloro-m-xylene	0	D	32 - 110
DCB Decachlorobiphenyl	0	D	38 - 140

Client: Waste Management Job Number: 500-24736-1

General Chemistry

Client Sample ID: STOCKPILE #1-SOIL

Lab Sample ID: 500-24736-1 Date Sampled: 03/30/2010 1045 Client Matrix: Solid Date Received: 03/31/2010 1000

Analyte Units RLDil Method Result Qual Percent Moisture 8.1 % 0.10 1.0 Moisture Analysis Batch: 500-83070 Date Analyzed: 03/31/2010 1155 DryWt Corrected: N Percent Solids % 92 0.10 1.0 Moisture

Analysis Batch: 500-83070 Date Analyzed: 03/31/2010 1155 DryWt Corrected: N

Client: Waste Management Job Number: 500-24736-1

General Chemistry

Client Sample ID: WALL-SOIL

Lab Sample ID: 500-24736-2 Date Sampled: 03/30/2010 1050

Client Matrix: Solid Date Received: 03/31/2010 1000

Analyte Units RLDil Method Result Qual Percent Moisture 9.8 % 0.10 1.0 Moisture Analysis Batch: 500-83070 Date Analyzed: 03/31/2010 1155 DryWt Corrected: N

Percent Solids 90 % 0.10 1.0 Moisture

Analysis Batch: 500-83070 Date Analyzed: 03/31/2010 1155 0.10 1.0 Moisture

On the provided of the provided of

Client: Waste Management Job Number: 500-24736-1

General Chemistry

Client Sample ID: STOCKPILE #2-SOIL

 Lab Sample ID:
 500-24736-3
 Date Sampled: 03/30/2010 1055

 Client Matrix:
 Solid
 Date Received: 03/31/2010 1000

Analyte Units RLDil Method Result Qual Percent Moisture 12 % 0.10 1.0 Moisture Analysis Batch: 500-83070 Date Analyzed: 03/31/2010 1155 DryWt Corrected: N Percent Solids % 88 0.10 1.0 Moisture Analysis Batch: 500-83070 Date Analyzed: 03/31/2010 1155 DryWt Corrected: N

DATA REPORTING QUALIFIERS

Client: Waste Management Job Number: 500-24736-1

Lab Section	Qualifier	Description
GC Semi VOA		
	D	Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a dilution may be flagged with a D.

QUALITY CONTROL RESULTS

Quality Control Results

Client: Waste Management Job Number: 500-24736-1

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
GC Semi VOA					
Prep Batch: 500-83118					
LCS 500-83118/3-A	Lab Control Sample	Т	Solid	3541	
MB 500-83118/1-A	Method Blank	T	Solid	3541	
500-24736-1	STOCKPILE #1-SOIL	T	Solid	3541	
500-24736-2	WALL-SOIL	Т	Solid	3541	
500-24736-3	STOCKPILE #2-SOIL	Т	Solid	3541	
Analysis Batch:500-833	87				
LCS 500-83118/3-A	Lab Control Sample	Т	Solid	8082	500-83118
MB 500-83118/1-A	Method Blank	Т	Solid	8082	500-83118
500-24736-1	STOCKPILE #1-SOIL	Т	Solid	8082	500-83118
500-24736-2	WALL-SOIL	Т	Solid	8082	500-83118
500-24736-3	STOCKPILE #2-SOIL	Т	Solid	8082	500-83118
Report Basis					
T = Total					
General Chemistry					
Analysis Batch:500-830	70				
500-24736-1	STOCKPILE #1-SOIL	T	Solid	Moisture	
500-24736-2	WALL-SOIL	T	Solid	Moisture	
500-24736-3	STOCKPILE #2-SOIL	T	Solid	Moisture	

Report Basis

T = Total

Client: Waste Management Job Number: 500-24736-1

Surrogate Recovery Report

8082 Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Client Matrix: Solid

		TCX2	DCB2
Lab Sample ID	Client Sample ID	%Rec	%Rec
500-24736-1	STOCKPILE #1-SOIL	0D	0D
500-24736-2	WALL-SOIL	0D	0D
500-24736-3	STOCKPILE #2-SOIL	0D	0D
MB 500-83118/1-A		75	98
LCS 500-83118/3-A		70	102

Surrogate	Acceptance Limits
TCX = Tetrachloro-m-xylene	32-110
DCB = DCB Decachlorobiphenyl	38-140

Quality Control Results

Job Number: 500-24736-1 Client: Waste Management

Method Blank - Batch: 500-83118 Method: 8082 Preparation: 3541

Lab Sample ID: MB 500-83118/1-A Analysis Batch: 500-83387 Instrument ID: INST31-32 Client Matrix: Prep Batch: 500-83118 Solid Lab File ID: 03301032 117.d

Units: ug/Kg Initial Weight/Volume: 15.0000 g Dilution: 1.0 Date Analyzed: 04/01/2010 1722 Final Weight/Volume: 5.0 mL

Date Prepared: 03/31/2010 2215 Injection Volume: 1 uL Column ID: **PRIMARY**

Analyte	Result	Qual	RL
PCB-1016	<17		17
PCB-1221	<17		17
PCB-1232	<17		17
PCB-1242	<17		17
PCB-1248	<17		17
PCB-1254	<17		17
PCB-1260	<17		17
Surrogate	% Rec	Acceptance Limits	
Tetrachloro-m-xylene	75	32 - 110	
DCD Decembershiphonyl	00	20 140	

DCB Decachlorobiphenyl 98 38 - 140

Lab Control Sample - Batch: 500-83118 Method: 8082 Preparation: 3541

Lab Sample ID: LCS 500-83118/3-A Analysis Batch: 500-83387 Instrument ID: INST31-32

Client Matrix: Solid Prep Batch: 500-83118 Lab File ID: 03301032 118.d Dilution: 1.0 Units: ug/Kg Initial Weight/Volume: 15.0000 g

Date Analyzed: 04/01/2010 1736 Final Weight/Volume: 5.0 mL Date Prepared: 03/31/2010 2215 Injection Volume: 1 uL Column ID: **PRIMARY**

Analyte Spike Amount Result % Rec. Limit Qual PCB-1016 167 137 82 47 - 115 PCB-1260 167 161 97 63 - 114

Surrogate % Rec Acceptance Limits Tetrachloro-m-xylene 70 32 - 110 102 38 - 140 DCB Decachlorobiphenyl

TestAmerica 2417 Bond Street University Park, IL 60466 708.534.5200	Sampler Temperat	ture on F	Receipt	t									_	ust	n of ody Rec	
TAL-4124-500 (1107) Client Waste Management Address SSSO E- Washinston Street City East Provide To Cold Project Name and Location (State)	1 0-4-44-1					- !/-	51	<u> —</u>	e Ma	Den	Date 3	د-03	010	- ' - 	500 - 2 Chain of Custody I	
3550 E- Washington Street	Telephone i	Number (A <i>694 d</i>	rea Cod	6)/Fax	Numbe	34	09	6	94.79	86_	Lab Nun	ber		F	age	_ of <u>/</u>
East Proving The W/6/1	S. W	102/he	~_	Lab	Johtact ———					Ana more	Jysis (Atti ₹ space ii	ach list s neede	if od)	<u> </u>		
Contract/Purchase Order/Quôte No.	Carrier/Way	yōlii Numbi 		1			 ars &		57.							Instructions ns of Receip
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time ≒	T- sal	Į Š	Unpres.	Pres FONH	· .	tives	S HOW	Pel							
Stockpile#1-501/ 3.3020011	·		χ	X				<u>* </u>	X	-			-			
Wall - 501/ 3-80 2010/1	1		<u>X</u> -	X	_ -			-	k V		++		-	 	 	
Stockpile#2 - 50/1 3-30-2010/	2:3	+	4-	Y			-	+	X		++-		+	-	 	
			+-			- 1		-	++-		++-		+	- -	-	
				-				. 🕂	4		++	-	1			
		+++	-	+	+-			-	+++	- ++		++	++	-	<u> </u>	
		 			-		+	+	+	' - - -	-+-		\dashv		 	
			+	++	1				+-	- -		+				
				T"								$\top \top$	*			
	Unknown [Sample Dis Return	•	. 12	Y Dispo	sal B	By Lab		Archive F	or	Months		may be r than 1 r		ed if samples are	retained
Turn Around Time Required ☐ 24 Hours	Other_				QC Req	uiren	nents ('Speci	fy)							-
1. Relinquished By	Date	Tin	 U 15 o		1 Recei	ved E	Ву	λ	27	·					Date 3 31 10	Time 1000
2. Religioushed By Mathew to UPS	0ate 30"/	72 /	ie 2. yz		2. Recei	ved E	Ву	\mathcal{A}		··					Date	Time
3. Relinguished By	Date	17m			3. Несе	ved £	- -								Date	Time
Comments DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with	the Severie	DINIM E:-	Page	 19	of:	· 2 0 _					·-					↓

Login Sample Receipt Check List

Client: Waste Management Job Number: 500-24736-1

Login Number: 24736 List Source: TestAmerica Chicago

Creator: Lunt, Jeff T List Number: 1

Question	T / F/ NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Is the Field Sampler's name present on COC?	True	
Sample Preservation Verified	True	

May 06, 2010

Ms. Bernadette Scheller SHAW ENVIRONMENTAL, INC. 1607 E. Main Street Suite C St. Charles, IL 60174

Project ID: 134172 - Behr Peoria First Environmental File ID: 10-1698

Date Received: May 04, 2010

Dear Ms. Bernadette Scheller:

The above referenced project was analyzed as directed on the enclosed chain of custody record.

All Quality Control criteria as outlined in the methods and current IL ELAP/NELAP have been met unless otherwise noted. QA/QC documentation and raw data will remain on file for future reference. Our accreditation number is 100292 and our current certificate is number 002468: effective 02/23/10 through 02/28/11.

I thank you for the opportunity to be of service to you and look forward to working with you again in the future. Should you have any questions regarding any of the enclosed analytical data or need additional information, please contact me at (630) 778-1200.

Sincerely,

William Mottashed Project Manager

Case Narrative

SHAW ENVIRONMENTAL, INC.

Project ID:

134172 - Behr Peoria

First Environmental File ID: 10-1698

Date Received:

May 04, 2010

Flag	Description	Flag	Description
<	Analyte not detected at or above the reporting limit.	L+	LCS recovery outside control limits; high bias.
В	Analyte detected in associated method blank.	L-	LCS recovery outside control limits; low bias.
С	Identification confirmed by GC/MS.	M	MS recovery outside control limits; LCS acceptable.
D	Surrogates diluted out; recovery not available.	M+	MS recovery outside control limits high bias; LCS acceptable.
Е	Estimated result; concentration exceeds calibration range.	M-	MS recovery outside control limits low bias; LCS acceptable.
F	Field measurement.	N	Analyte is not part of our NELAC accreditation.
		ND	Analyte was not detected using a library search routine; No calibration standard was analyzed.
G	Surrogate recovery outside control limits; matrix effect.	P	Chemical preservation pH adjusted in lab.
Н	Analysis or extraction holding time exceeded.	Q	The analyte was determined by a GC/MS database search.
J	Estimated result; concentration is less than calib range.	S	Analyte was sub-contracted to another laboratory for analysis.
K	RPD outside control limits.	Т	Sample temperature upon receipt exceeded 0-6°C
RL	Routine Reporting Limit (Lowest amount that can be detected when routine weights/volumes are used without dilution.)	W	Reporting limit elevated due to sample matrix.

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

Method Comments

Lab Number	Sample ID	Comments:
10-1698-001	S-2 NE	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-002	S-2 NW	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-003	S-2 SE	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-004	S-2 SW	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-005	S-5 NE	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-006	S-5 NW	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Case Narrative

SHAW ENVIRONMENTAL, INC.

Project ID:

134172 - Behr Peoria

First Environmental File ID: 10-1698

Date Received:

May 04, 2010

Flag	Description	Flag	Description
<	Analyte not detected at or above the reporting limit.	L+	LCS recovery outside control limits; high bias.
В	Analyte detected in associated method blank.	L-	LCS recovery outside control limits; low bias.
С	Identification confirmed by GC/MS.	М	MS recovery outside control limits; LCS acceptable.
D	Surrogates diluted out; recovery not available.	M+	MS recovery outside control limits high bias; LCS acceptable.
Е	Estimated result; concentration exceeds calibration range.	M-	MS recovery outside control limits low bias; LCS acceptable.
F	Field measurement.	N	Analyte is not part of our NELAC accreditation.
	entered the second section of the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section s	ND	Analyte was not detected using a library search routine; No calibration standard was analyzed.
G	Surrogate recovery outside control limits; matrix effect.	P	Chemical preservation pH adjusted in lab.
Н	Analysis or extraction holding time exceeded.	Q	The analyte was determined by a GC/MS database search.
J	Estimated result; concentration is less than calib range.	S	Analyte was sub-contracted to another laboratory for analysis.
K	RPD outside control limits.	T	Sample temperature upon receipt exceeded 0-6°C
RL	Routine Reporting Limit (Lowest amount that can be detected when routine weights/volumes are used without dilution.)	W	Reporting limit elevated due to sample matrix.

All quality control criteria, as outlined in the methods, have been met except as noted below or on the following analytical report.

•		
10-1698-007	S-5 SE	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-008	S-5 SW	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-009	S-11 NE	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-010	S-11 NW	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-011	S-11 SE	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-012	S-11 SW	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-013	S-15 NE	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-014	S-15 NW	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-015	S-15 SE	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.
10-1698-016	S-15 SW	Polychlorinated biphenyls (PCBs) The reporting limits are elevated due to matrix interference.

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

SHAW ENVIRONMENTAL, INC.

Date Collected: 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 13:19

Sample ID:

S-2 NE

Date Received:

05/04/10

10-1698-001 Sample No:

Date Reported: 05/06/10

Results are reported on a dry weight basis.

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		87.85		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 354 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		10,200	80.0	ug/kg	
Aroclor 1254		15,900	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client: SHAW ENVIRONMENTAL, INC. **Date Collected:** 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 13:32

Sample ID: S-2 NW

Date Received:

05/04/10

Sample No: 10-1698-002

Date Reported: 05/06/10

Results are reported on a dry weight basis

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		84.15		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 354 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		10,900	80.0	ug/kg	
Aroclor 1254		29,300	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

SHAW ENVIRONMENTAL, INC.

Date Collected: 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 13:23

Sample ID: 10-1698-003 Date Received:

05/04/10

Sample No:

S-2 SE

Date Reported: 05/06/10

Results are reported on a dry weight bas	is.				
Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		84.59		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 354 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		21,900	80.0	ug/kg	
Aroclor 1254		11,700	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

SHAW ENVIRONMENTAL, INC. **Client:**

Date Collected: 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 13:28

Sample ID: **S-2 SW** **Date Received:** 05/04/10

Sample No: 10-1698-004

Date Reported: 05/06/10

Results are reported on a dry weight basis

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				·
Total Solids		84.04		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 35 4 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		6,870	80.0	ug/kg	
Aroclor 1254		9,220	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

SHAW ENVIRONMENTAL, INC. **Client:**

Date Collected: 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 13:36

Sample ID: S-5 NE Date Received: 05/04/10

Sample No: 10-1698-005 Date Reported: 05/06/10

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		88.64		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082	Preparation Method 3540C Preparation Date: 05/05/10			
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		8,240	80.0	ug/kg	
Aroclor 1254		10,500	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

SHAW ENVIRONMENTAL, INC.

Date Collected: 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 13:44

Sample ID:

Date Received: 05/04/10

S-5 NW

Date Reported: 05/06/10

Sample No: 10-1698-006 Results are reported on a dry weight basis.

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B		1.000		
Total Solids		87.42		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082	Preparation Method 3540C Preparation Date: 05/05/10			
Aroclor 1016		< 400	80.0	ug/kg	

Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082		Preparation Method 3540C Preparation Date: 05/05/10
Aroclor 1016		< 400	80.0 ug/kg
Aroclor 1221		< 400	80.0 ug/kg
Aroclor 1232		< 400	80.0 ug/kg
Aroclor 1242		< 400	80.0 ug/kg
Aroclor 1248		13,200	80.0 ug/kg
Aroclor 1254		14,000	160 ug/kg
Aroclor 1260		< 800	160 ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

11,500

< 800

160

160

Analytical Report

SHAW ENVIRONMENTAL, INC. **Client:**

Date Collected: 05/03/10

Project ID:

Aroclor 1254

Aroclor 1260

134172 - Behr Peoria

Time Collected: 13:39

Sample ID: S-5 SE Date Received:

ug/kg

ug/kg

10-1698-007 Sample No:

Date Reported:

05/04/10 05/06/10

Results are reported on a dry weight basis.

Analyte Result R.L. Units Flags Solids, total Method: 2540B Analysis Date: 05/04/10 **Total Solids** % 87.27 Polychlorinated biphenyls (PCBs) Method: 8082 Preparation Method 3540C Analysis Date: 05/05/10 Preparation Date: 05/05/10 Aroclor 1016 < 400 80.0 ug/kg Aroclor 1221 < 400 80.0 ug/kg Aroclor 1232 < 400 80.0 ug/kg Aroclor 1242 < 400 80.0 ug/kg Aroclor 1248 10,800 80.0 ug/kg

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client: SHAW ENVIRONMENTAL, INC.

10-1698-008

Date Collected: 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 13:41

Sample ID:

Date Received:

05/04/10

Sample No:

S-5 SW

Date Reported: 05/06/10

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		84.75		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082	Preparation Method 3540C Preparation Date: 05/05/10			
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		14,300	80.0	ug/kg	
Aroclor 1254		12,100	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client: SHAW ENVIRONMENTAL, INC. **Date Collected:** 05/03/10

Project ID:

134172 - Behr Peoria

Sample ID: S-11 NE Time Collected: 13:48

Sample No: 10-1698-009 **Date Received:** 05/04/10 **Date Reported:** 05/06/10

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		89.13		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 354 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		9,140	80.0	ug/kg	
Aroclor 1254		14,300	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

SHAW ENVIRONMENTAL, INC. Client: **Date Collected:** 05/03/10 Time Collected: 13:56 **Project ID:** 134172 - Behr Peoria Sample ID: S-11 NW **Date Received:** 05/04/10 Sample No: 10-1698-010 **Date Reported:** 05/06/10

Results are reported on a dry weight bas	sis.				
Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		85.30		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 354 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		22,100	80.0	ug/kg	
Aroclor 1254		35,800	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client: SHAW ENVIRONMENTAL, INC.

Date Collected: 05/03/10

Project ID: 134172 - Behr Peoria

Time Collected: 13:51

Sample ID: S-11 SE

Date Received: 05/04/10

Sample No: 10-1698-011

Date Reported: 05/06/10

Results are reported on a dry weight basis.

Analyte		Result	R.L.	Units	Flags			
Solids, total Analysis Date: 05/04/10	Method: 2540B							
Total Solids		88.05		%				
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Preparation Method 3540C Preparation Date: 05/05/10							
Aroclor 1016		< 400	80.0	ug/kg				
Aroclor 1221		< 400	80.0	ug/kg				
Aroclor 1232		< 400	80.0	ug/kg				
Aroclor 1242		< 400	80.0	ug/kg				
Aroclor 1248		12,300	80.0	ug/kg				
Aroclor 1254		12,700	160	ug/kg				
Aroclor 1260		< 800	160	ug/kg				

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client: SHAW ENVIRONMENTAL, INC. **Date Collected:** 05/03/10

Project ID: 134172 - Behr Peoria Time Collected: 13:54

Sample ID: S-11 SW Date Received: 05/04/10

10-1698-012 Sample No:

Date Reported: 05/06/10

Results are reported on a dry weight basis

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		87.72		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 354 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		11,900	80.0	ug/kg	
Aroclor 1254		< 800	160	ug/kg	
Aroclor 1260		7.330	160	ug/kg	

Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

SHAW ENVIRONMENTAL, INC.

Date Collected: 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 13:58

Sample ID:

S-15 NE

Date Received: 05/04/10

Sample No: 10-1698-013 **Date Reported:** 05/06/10

Pacults are reported on a dry weight basis

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		92.27		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 354 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		11,100	80.0	ug/kg	
Aroclor 1254		15,600	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

First Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

SHAW ENVIRONMENTAL, INC.

Date Collected: 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 14:06

Sample ID:

S-15 NW

Date Received: 05/04/10

Sample No:

10-1698-014

Date Reported: 05/06/10

Results are reported on a dry weight basis.

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		85.02		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 354 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		11,400	80.0	ug/kg	
Aroclor 1254		16,300	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client: SHAW ENVIRONMENTAL, INC. **Date Collected:** 05/03/10

Project ID: 134172 - Behr Peoria Time Collected: 14:01

Sample ID: S-15 SE Date Received:

Sample No: 10-1698-015

05/04/10 Date Reported: 05/06/10

Results are reported on a dry weight basis

Analyte		Result	R.L.	Units	Flags
Solids, total Analysis Date: 05/04/10	Method: 2540B				
Total Solids		92.70		%	
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 354 Date: 05/05/10	
Aroclor 1016		< 400	80.0	ug/kg	
Aroclor 1221		< 400	80.0	ug/kg	
Aroclor 1232		< 400	80.0	ug/kg	
Aroclor 1242		< 400	80.0	ug/kg	
Aroclor 1248		11,300	80.0	ug/kg	
Aroclor 1254		15,600	160	ug/kg	
Aroclor 1260		< 800	160	ug/kg	

Environmental Laboratories, Inc.

IL ELAP / NELAC Accreditation # 100292

1600 Shore Road • Naperville, Illinois 60563 • Phone (630) 778-1200 • Fax (630) 778-1233

Analytical Report

Client:

SHAW ENVIRONMENTAL, INC.

Date Collected: 05/03/10

Project ID:

134172 - Behr Peoria

Time Collected: 14:04

Sample ID:

05/04/10

Sample No:

S-15 SW

Date Received:

Date Reported: 05/06/10

10-1698-016

Results are reported on a dry weight basis. Analyte Result R.L. Units Flags Solids, total Method: 2540B Analysis Date: 05/04/10

Total Solids		93.47		%
Polychlorinated biphenyls (PCBs) Analysis Date: 05/05/10	Method: 8082			Method 3540C Date: 05/05/10
Aroclor 1016		< 400	80.0	ug/kg
Aroclor 1221		< 400	80.0	ug/kg
Aroclor 1232		< 400	80.0	ug/kg
Aroclor 1242		< 400	80.0	ug/kg
Aroclor 1248		9,420	80.0	ug/kg
Aroclor 1254		12,700	160	ug/kg
Aroclor 1260		< 800	160	ug/kg

Environmental Laboratories, Inc.

First Environmental Laboratories

CHAIN OF CUSTODY RECORD

Company Name: SHOW FNVI RUNMSWTAL, INC Street Address: 1607 EAST MAIN STREET

Page $\int of \mathbb{Z} pgs$

600 Shore Road, Suite D	•	<u>C</u> i	ty: 57, C	HARLES			State:	16 Zip: 60178
Japerville, Illinois 60563		Ph	one: 630	-762-140) Fax: 6	30.762	-1407 e-mail:	:bernadelf.schellereshau
Phone: (630) 778-1200 • Fax: (630) 778-1233 -mail: firstinfo@firstenv.com							Nia: Fax	e-mail . con
EPA Certification #100292		Sa	mpled By:	ZPC				
						Analyses		
Project I.D.: 134172 - BEHR PEURLA						7	7//	
P.O. #.:	-					/ / .	/ / /	
			651	/ / ,	/ /	;		·
			(3)/					
			/ 🔻		/ /		/ /	
Matrix Codes: S = Soil W = Water O = Other		_/						
Date/Time Taken Sample Description	Matı						Comments	
5/3/10 1319 52 NE	S	<u> </u>						10-1698-001
5/3/10 1332 S-2 NW			· 10					002
5/3/10 1323 S-2 SE								003
5/3/10 1320 S-25W						<u> </u>		004
5/3/10 1336 S-S NE								005
5/3/10 13844 S-5 NW 5/3/10 1339 S-5 SE								006
S/3/10 334 S-5 SE		-44				 		<u> </u>
5/3/10 1341 S-5 SW								009
5/3/10 1348 S-11 NE 5/3/10 1356 S-11 NW		$\dashv \downarrow$						009
5/3/10 1356 S-11 NW 5/3/10 1351 S-11 SE		$\dashv f$				 		0(0
5/3/10 1351 S-11 SE 5/3/10 1354 S-11 SW	- 	1			_	,		
	X_						<u> </u>	012
FOR LAB USE ONLY:								
Cooler Temperature: 0.1-6°C Yes No°C Received within 6 hrs. of collection:	Sample Re	frigerate r Tompe	ed: Yes X No	Conta	iners Rece	eived Preserve	d: Yes No	
ce Present: Yes No	5035 Vials	Frozen:	Yes No			*		
			re:ºC					
Notes and Special Instructions:			- 7 17			- 6		
				<u>USH</u>				
Must	MEET	m	NIMUM	TACO	A E/Q-	REMEN	TS	
Relinquished By: Zachary Christ Date	_ <	-14	10 1:25	pM	[]///	7/		C/4/10 11100
Date Date Date Date Date Date Date Date	e/Time	/ '	1,0,	Received By:	<i>YW</i>		Date/Tit	me 5/4/10 1:10P.
Relinquished By: Dat	e/Time	.		Received By:/	1-1		Date/Tir	me
2011 1100					,			

CHAIN OF CUSTODY RECORD

 $_{\text{Page}}$ 2_{of} 2_{pgs}

First
Environmental
Laboratories, Inc.

First Environmental Laboratories

1600 Shore Road, Suite D Naperville, Illinois 60563

Phone: (630) 778-1200 • Fax: (630) 778-1233

E-mail: firstinfo@firstenv.com IEPA Certification #100292

COMPANY Name: SHAW ENVIRONMENTAL	, INC		
Street Address: 1607 EAST MAIN STREE	T		
City: ST CHARLES	State: / C	Zip: 60178	
Phone: 630-762-1400 Fax: 630-762-1402	e-mail: Lemoo	ulk. Schelenesh	awyp.com
Send Report To: BRUADETTE SCHELLER Via: I	Fax 🗔	e-mail 🔀	
Sampled By: ZPC			

Analyses

Project I.D.: 13	1172 - BEHR PEORI	A		,	/ ,	/ /	/ ,	/ ,	/ ,	/ ,	/ /	/ /			
,				105											
			/	/37			· /	/	/]
			//	QY											
	Soil W = Water O = Other				Ι,	/ (/ ,								
Date/Time Taken	Sample Description	Matrix									•	Comments		Lab I.D.	
5/3/10 1358		5	X										10	-1698-0	713
5/3/10 1406	S-15 NW														114
	S-15 SE														715
5/3/10 1404	S-15 SW	义	人												26
. ,			<u> </u>												
	· · · · · · · · · · · · · · · · · · ·		<u> </u>												
			ļ	ļ											
									<u> </u>	L					
			<u> </u>												
			<u> </u>	-											
			ļ	_										w	
			<u> </u>	<u> </u>						L	<u> </u>				
FOR LAB USE ONLY:															
Received within 6 hrs.		Refrigerator 1	empera	ture: <u>`</u>	<u>4_</u> ℃	Со	ntainers	s Recei	ved Pre	served:	Yes	□No			
Ice Present: Yes No	D	5035 Vials Fr Freezer Temp													
Notes and Special In	structions:														
				* !	RU	54	T	AT	-						
	Mus	T MEST		,						28M	8075	-			
	eading One	_	-141	12 F	25 pr	`			3	1			5/4/	10 1	7/1/4
Keiinquished By:		Date/Time	1-11		Rec	eived By	::_ <i>[fs]</i>	1/	fu			Date/Time _			
Relinquished By: Rev. 4/06		Date/Time			Rec	eived By	//	-[Date/Time _			
ALC 7 - 4/00															

Appendix B Email from Mirtha Capiro Recommending That Behr Implement the PCB Waste Characterization as Proposed

Bernadette Scheller

 scheller@gmail.com>

U.S. EPA recommendation on PCB waste characterization - RE: Behr Peoria Work Plan Resubmission

1 message	
Capiro, Mirtha <capiro.mirtha@epa.gov> To: Bernadette Scheller Not Responsive</capiro.mirtha@epa.gov>	Wed, Dec 17, 2014 at 8:11 P
Bernadette,	
Thank you for providing the above resubmission for Behr Peoria, Inc. (Behr).	
U.S. EPA has no further comments on the PCB waste characterization aspect of your resubmission. Therefore, U.S. the PCB waste characterization as proposed. As you have indicated, Behr would like to conduct self-implementing remediation waste following completion of PCB waste characterization.	·
As agreed per our discussions, once the PCB waste characterization has been completed, Behr will prepare and sub Workplan based on the PCB waste characterization results. The self-implementing PCB Cleanup Workplan should bunder 40 CFR 761.61(a).	
Please let me know if you have any questions. Please note that I will be out of the office starting tomorrow and ret mail if you would like to reach me sooner than that and I will try to get back to you.	urning 1/5/15. Please leave me a voice
Thanks for your cooperation.	
Mirtha Cápiro	

Environmental Scientist

Corrective Action Section 2

Remediation and Reuse Branch

Land and Chemicals Division

United States Environmental Protection Agency

Region 5

77 W Jackson Boulevard, LU-9J

Chicago, Illinois 60604

USA

Telephone: 312-886-7567

Fax: 312-697-2509

email: capiro.mirtha@epa.gov

From: Bernadette Scheller [mailto: Not Responsive

Sent: Wednesday, December 17, 2014 10:52 AM

To: Capiro, Mirtha

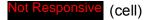
Subject: Behr Peoria Work Plan Resubmission

Mirtha,

As per your request, I am resubmitting the PCB Remediation Waste Characterization and Disposal Plan for Behr Peoria, Inc., 2424 Clark Street, Peoria, Illinois with the corrected formula: Probability of False Positive (0.05 - 1.645).

Please feel free to contact me with any questions or concerns.

Thank you,


Bernadette Scheller P.G.

Tephra Environmental Compliance LLC

869 Iroquois Circle

Baraboo, WI 53913

608-448-2024 (work)

This message contains confidential information and is intended only for the individual named. If you are not the named addressee you should not disseminate, distribute or copy this e-mail. Please notify the sender immediately by e-mail if you have received this e-mail by mistake and delete this e-mail from your system. E-mail transmission cannot be guaranteed to be secure or error-free as information could be intercepted, corrupted, lost, destroyed, arrive late or incomplete, or contain viruses. The sender therefore does not accept liability for any errors or omissions in the contents of this message, which arise as a result of e-mail transmission. If verification is required please request a hard-copy version.

PCB Remediation Waste Characterization and Disposal Plan .pdf 3022K

Appendix C 2015 Laboratory Reports

Technical Report for

GHD Services Inc.

Behr, Peoria, IL

11103179

Accutest Job Number: MC41122

Sampling Dates: 08/26/15 - 08/27/15

GHD Services Inc.

kathleen.shaw@ghd.com

ATTN: Kathy Shaw

Total number of pages in report: 171

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Jeremy Vienneau 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) DoD ELAP (L-A-B L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Jeremy Vienneau

Accutest Laboratories of New England, Inc.

GHD
45 Farmington Valley Drive
Plainville, CT 06062

October 1, 2015

Accutest Job MC41122 (revision 1)

Ms. Shaw,

The report of Accutest job number MC41122 has been revised to remove the footnote "Sample reextracted beyond recommended holding time." as per your email request on September 28, 2015.

Sincerely,

Sections:

-1-

Table of Contents

1 3	6
Section 2: Summary of Hits	11
Section 3: Sample Results	
3.1: MC41122-1: S-082615-GW-01	
3.2: MC41122-2: S-082615-GW-02	
3.3: MC41122-3: S-082615-GW-03	
3.4: MC41122-4: S-082615-GW-04	
3.5: MC41122-5: S-082615-GW-05	
3.6: MC41122-6: S-082615-GW-06	
3.7: MC41122-7: S-082615-GW-07	
3.8: MC41122-8: S-082615-GW-08	
3.9: MC41122-9: S-082615-GW-09	
3.10: MC41122-10: S-082615-GW-10	
3.11: MC41122-11: S-082615-GW-11	
3.12: MC41122-12: S-082615-GW-12	31
3.13: MC41122-13: S-082615-GW-13	
3.14: MC41122-14: S-082615-GW-14	
3.15: MC41122-15: S-082615-GW-15	
3.16: MC41122-16: S-082615-GW-16	35
3.17: MC41122-17: S-082615-GW-17	36
3.18: MC41122-18: S-082615-GW-18	37
3.19: MC41122-19: S-082615-GW-19	38
3.20: MC41122-20: S-082615-GW-20	39
3.21: MC41122-21: S-082615-GW-21	40
3.22: MC41122-22: S-082615-GW-22	41
3.23: MC41122-23: S-082615-GW-23	
3.24: MC41122-24: S-082615-GW-24	43
3.25: MC41122-25: S-082615-GW-25	44
3.26: MC41122-26: S-082615-GW-26	45
3.27: MC41122-27: S-082615-GW-27	46
3.28: MC41122-28: S-082615-GW-28	47
3.29: MC41122-29: S-082615-GW-29	48
3.30: MC41122-30: S-082615-GW-30	49
3.31: MC41122-31: S-082615-GW-31	50
3.32: MC41122-32: S-082615-GW-32	51
3.33: MC41122-33: S-082615-GW-33	52
3.34: MC41122-34: S-082615-GW-34	53
3.35: MC41122-35: S-082615-GW-35	54
3.36: MC41122-36: S-082615-GW-36	55
3.37: MC41122-37: S-082615-GW-37	56
3.38: MC41122-38: S-082615-GW-38	57
3.39: MC41122-39: S-082615-GW-39	58

N

ယ

တ

œ

Sections:

-2-

Table of Contents

<u>-</u>	
3.40: MC41122-40: S-082615-GW-40	
3.41: MC41122-41: S-082615-GW-41	60
3.42: MC41122-42: S-082615-GW-42	61
3.43: MC41122-43: S-082715-GW-43	62
3.44: MC41122-44: S-082715-GW-44	63
3.45: MC41122-45: S-082715-GW-45	64
3.46: MC41122-46: S-082715-GW-51	65
3.47: MC41122-47: S-082715-GW-52	71
3.48: MC41122-48: S-082715-GW-53	
3.49: MC41122-49: S-082715-GW-54	83
3.50: MC41122-50: S-082715-GW-46	
3.51: MC41122-51: S-082715-GW-47	90
3.52: MC41122-52: S-082715-GW-48	
3.53: MC41122-53: S-082715-GW-49	92
3.54: MC41122-54: S-082715-GW-50	93
Section 4: Misc. Forms	
4.1: Chain of Custody	95
Section 5: GC/MS Volatiles - QC Data Summaries	106
5.1: Method Blank Summary	107
5.2: Leachate Blank Summary	108
5.3: Blank Spike/Blank Spike Duplicate Summary	
5.4: Leachate Spike Summary	110
5.5: Surrogate Recovery Summaries	
Section 6: GC/MS Semi-volatiles - QC Data Summaries	112
6.1: Method Blank Summary	113
6.2: Blank Spike Summary	114
6.3: Matrix Spike/Matrix Spike Duplicate Summary	115
6.4: Surrogate Recovery Summaries	
Section 7: GC Semi-volatiles - QC Data Summaries	117
7.1: Method Blank Summary	118
7.2: Leachate Blank Summary	124
7.3: Blank Spike Summary	126
7.4: Matrix Spike/Matrix Spike Duplicate Summary	132
7.5: Surrogate Recovery Summaries	138
Section 8: Metals Analysis - QC Data Summaries	14 4
8.1: Prep QC MP25080: As,Ba,Cd,Cr,Pb,Se,Ag	145
8.2: Prep QC MP25083: Hg	
Section 9: General Chemistry - QC Data Summaries	160
9.1: Method Blank and Spike Results Summary	161
9.2: Duplicate Results Summary	162
9.3: Matrix Spike Results Summary	163
9.4: Matrix Spike Duplicate Results Summary	164

Sections:

Table of Contents

-3-

Section 10: Misc. Forms (Accutest New Jersey)	165
10.1: Chain of Custody	166
Section 11: General Chemistry - QC Data (Accutest New Jersey)	
11.1: Method Blank and Spike Results Summary	169
11.2: Duplicate Results Summary	170
11.3: Matrix Spike Results Summary	171

Sample Summary

GHD Services Inc.

Job No:

MC41122

Behr, Peoria, IL Project No: 11103179

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
MC41122-1	08/26/15	08:49 JHCW	08/29/15	so	Soil	S-082615-GW-01
MC41122-2	08/26/15	09:04 JHCW	08/29/15	SO	Soil	S-082615-GW-02
MC41122-3	08/26/15	09:11 JHCW	08/29/15	SO	Soil	S-082615-GW-03
MC41122-4	08/26/15	09:22 JHCW	08/29/15	SO	Soil	S-082615-GW-04
MC41122-5	08/26/15	09:26 JHCW	08/29/15	SO	Soil	S-082615-GW-05
MC41122-6	08/26/15	09:40 JHCW	08/29/15	SO	Soil	S-082615-GW-06
MC41122-7	08/26/15	09:58 JHCW	08/29/15	SO	Soil	S-082615-GW-07
MC41122-8	08/26/15	10:02 JHCW	08/29/15	SO	Soil	S-082615-GW-08
MC41122-9	08/26/15	10:08 JHCW	08/29/15	SO	Soil	S-082615-GW-09
MC41122-10	08/26/15	10:15 JHCW	08/29/15	SO	Soil	S-082615-GW-10
MC41122-11	08/26/15	10:20 JHCW	08/29/15	SO	Soil	S-082615-GW-11
MC41122-12	08/26/15	10:23 JHCW	08/29/15	SO	Soil	S-082615-GW-12
MC41122-13	08/26/15	10:27 JHCW	08/29/15	SO	Soil	S-082615-GW-13

Sample Summary (continued)

Job No:

MC41122

GHD Services Inc.

Behr, Peoria, IL Project No: 11103179

Sample Number	Collected Date		Received	Matri Code		Client Sample ID
MC41122-14	08/26/15	10:32 JHCW	08/29/15	SO	Soil	S-082615-GW-14
MC41122-15	08/26/15	10:39 JHCW	08/29/15	SO	Soil	S-082615-GW-15
MC41122-16	08/26/15	10:43 JHCW	08/29/15	SO	Soil	S-082615-GW-16
MC41122-17	08/26/15	10:59 JHCW	08/29/15	SO	Soil	S-082615-GW-17
MC41122-18	08/26/15	11:07 JHCW	08/29/15	SO	Soil	S-082615-GW-18
MC41122-19	08/26/15	11:10 JHCW	08/29/15	SO	Soil	S-082615-GW-19
MC41122-20	08/26/15	11:13 JHCW	08/29/15	SO	Soil	S-082615-GW-20
MC41122-21	08/26/15	11:17 JHCW	08/29/15	SO	Soil	S-082615-GW-21
MC41122-22	08/26/15	11:35 JHCW	08/29/15	SO	Soil	S-082615-GW-22
MC41122-23	08/26/15	11:45 JHCW	08/29/15	SO	Soil	S-082615-GW-23
MC41122-24	08/26/15	12:59 JHCW	08/29/15	SO	Soil	S-082615-GW-24
MC41122-25	08/26/15	13:04 JHCW	08/29/15	SO	Soil	S-082615-GW-25
MC41122-26	08/26/15	13:12 JHCW	08/29/15	SO	Soil	S-082615-GW-26

Sample Summary (continued)

Job No:

MC41122

GHD Services Inc.

Behr, Peoria, IL Project No: 11103179

Sample Number	Collected Date		Received	Matri Code		Client Sample ID
MC41122-27	08/26/15	13:15 JHCW	08/29/15	SO	Soil	S-082615-GW-27
MC41122-28	08/26/15	13:19 JHCW	08/29/15	SO	Soil	S-082615-GW-28
MC41122-29	08/26/15	13:24 JHCW	08/29/15	SO	Soil	S-082615-GW-29
MC41122-30	08/26/15	13:43 JHCW	08/29/15	SO	Soil	S-082615-GW-30
MC41122-31	08/26/15	13:49 JHCW	08/29/15	SO	Soil	S-082615-GW-31
MC41122-32	08/26/15	13:52 JHCW	08/29/15	SO	Soil	S-082615-GW-32
MC41122-33	08/26/15	14:08 JHCW	08/29/15	SO	Soil	S-082615-GW-33
MC41122-34	08/26/15	14:14 JHCW	08/29/15	SO	Soil	S-082615-GW-34
MC41122-35	08/26/15	14:21 JHCW	08/29/15	SO	Soil	S-082615-GW-35
MC41122-36	08/26/15	14:25 JHCW	08/29/15	SO	Soil	S-082615-GW-36
MC41122-37	08/26/15	14:32 JHCW	08/29/15	SO	Soil	S-082615-GW-37
MC41122-38	08/26/15	14:35 JHCW	08/29/15	SO	Soil	S-082615-GW-38
MC41122-39	08/26/15	14:41 JHCW	08/29/15	SO	Soil	S-082615-GW-39

$\underset{(continued)}{\textbf{Sample Summary}}$

Job No:

MC41122

GHD Services Inc.

Behr, Peoria, IL Project No: 11103179

Sample Number	Collected Date	Time	Ву	Received	Matri Code		Client Sample ID
MC41122-40	08/26/15	14:48	JHCW	08/29/15	SO	Soil	S-082615-GW-40
MC41122-41	08/26/15	15:08	JHCW	08/29/15	SO	Soil	S-082615-GW-41
MC41122-42	08/26/15	15:11	JHCW	08/29/15	SO	Soil	S-082615-GW-42
MC41122-43	08/27/15	07:36	JHCW	08/29/15	SO	Soil	S-082715-GW-43
MC41122-44	08/27/15	07:44	JHCW	08/29/15	SO	Soil	S-082715-GW-44
MC41122-45	08/27/15	07:48	JHCW	08/29/15	SO	Soil	S-082715-GW-45
MC41122-46	08/27/15	09:14	JHCW	08/29/15	SO	Soil	S-082715-GW-51
MC41122-47	08/27/15	09:23	JHCW	08/29/15	SO	Soil	S-082715-GW-52
MC41122-48	08/27/15	09:32	JHCW	08/29/15	SO	Soil	S-082715-GW-53
MC41122-49	08/27/15	09:44	JHCW	08/29/15	SO	Soil	S-082715-GW-54
MC41122-50	08/27/15	07:52	JHCW	08/29/15	SO	Soil	S-082715-GW-46
MC41122-51	08/27/15	07:56	JHCW	08/29/15	SO	Soil	S-082715-GW-47
MC41122-52	08/27/15	07:59	JHCW	08/29/15	SO	Soil	S-082715-GW-48

Sample Summary (continued)

GHD Services Inc.

Job No: MC41122

Behr, Peoria, IL Project No: 11103179

Sample	Collected		Matrix		ix	Client	
Number	Date	Time By	Received	Code	Type	Sample ID	
MC41122-53	08/27/15	08:04 JHCW	08/29/15	SO	Soil	S-082715-GW-49	
MC41122-54	08/27/15	08:08 JHCW	08/29/15	SO	Soil	S-082715-GW-50	

Account: GHD Services Inc.

Project: Behr, Peoria, IL

Collected: 08/26/15 thru 08/27/15

Tak Cara L TO	Climat C. 1 Th	D14/				
Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC41122-1	S-082615-GW-01					
Aroclor 1248 a		6770	1800	640	ug/kg	SW846 8082A
Aroclor 1254		10100	1800	480	ug/kg	SW846 8082A
Aroclor 1260 ^a		2340	1800	270	ug/kg	SW846 8082A
MC41122-2	S-082615-GW-02					
Aroclor 1248		42900	4000	1400	ug/kg	SW846 8082A
Aroclor 1254 a		38900	4000	1000	ug/kg	SW846 8082A
Aroclor 1260 a		3970 J	4000	580	ug/kg	SW846 8082A
MC41122-3	S-082615-GW-03					
Aroclor 1248		15200	3600	1300	ug/kg	SW846 8082A
Aroclor 1254 a		13000	3600	950	ug/kg	SW846 8082A
Aroclor 1260 a		2620 J	3600	530	ug/kg	SW846 8082A
MC41122-4	S-082615-GW-04					
Aroclor 1248 ^a		12500	3600	1300	ug/kg	SW846 8082A
Aroclor 1254		14800	3600	930	ug/kg	SW846 8082A
Aroclor 1260 a		3100 J	3600	520	ug/kg	SW846 8082A
MC41122-5	S-082615-GW-05					
Aroclor 1248 ^a		11000	3700	1300	ug/kg	SW846 8082A
Aroclor 1254		15900	3700	960	ug/kg	SW846 8082A
Aroclor 1260 ^a		3140 J	3700	540	ug/kg	SW846 8082A
MC41122-6	S-082615-GW-06					
Aroclor 1248 a		5130	740	260	ug/kg	SW846 8082A
Aroclor 1254		5740	740	190	ug/kg	SW846 8082A
Aroclor 1260 a		1300	740	110	ug/kg	SW846 8082A
MC41122-7	S-082615-GW-07					
Aroclor 1248 ^a		4070	710	250	ug/kg	SW846 8082A
Aroclor 1254		7380	710	180	ug/kg	SW846 8082A
Aroclor 1260 a		1640	710	100	ug/kg	SW846 8082A
MC41122-8	S-082615-GW-08					
Aroclor 1248 a		5300	1800	630	ug/kg	SW846 8082A

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Aroclor 1254 Aroclor 1260 a		7900 2030	1800 1800	470 260	ug/kg ug/kg	SW846 8082A SW846 8082A
MC41122-9	S-082615-GW-09	2030	1000	200	ug/ Kg	5 110 10 0002/1
Aroclor 1248 a		8980	1800	640	ug/kg	SW846 8082A
Aroclor 1254 Aroclor 1260 ^a		11700 2330	1800 1800	470 270	ug/kg ug/kg	SW846 8082A SW846 8082A
MC41122-10	S-082615-GW-10					
Aroclor 1248 ^a		8040	1800	640	ug/kg	SW846 8082A
Aroclor 1254		12200	1800	480	ug/kg	SW846 8082A
Aroclor 1260 a		3000	1800	270	ug/kg	SW846 8082A
MC41122-11	S-082615-GW-11					
Aroclor 1248 a		3450	740	260	ug/kg	SW846 8082A
Aroclor 1254		4200	740	190	ug/kg	SW846 8082A
Aroclor 1260 ^a		1560	740	110	ug/kg	SW846 8082A
MC41122-12	S-082615-GW-12					
Aroclor 1248 a		2800	360	130	ug/kg	SW846 8082A
Aroclor 1254		3480	360	94	ug/kg	SW846 8082A
Aroclor 1260 a		1120	360	53	ug/kg	SW846 8082A
MC41122-13	S-082615-GW-13					
Aroclor 1248 a		7450	1700	610	ug/kg	SW846 8082A
Aroclor 1254		12500	1700	450	ug/kg	SW846 8082A
Aroclor 1260 a		3120	1700	260	ug/kg	SW846 8082A
MC41122-14	S-082615-GW-14					
Aroclor 1248 a		16500	3700	1300	ug/kg	SW846 8082A
Aroclor 1254		19800	3700	980	ug/kg	SW846 8082A
Aroclor 1260 ^a		3130 J	3700	550	ug/kg	SW846 8082A
MC41122-15	S-082615-GW-15					
Aroclor 1248 a		8020	1800	630	ug/kg	SW846 8082A
Aroclor 1254		11000	1800	470	ug/kg	SW846 8082A
Aroclor 1260 ^a		2650	1800	260	ug/kg	SW846 8082A

Account: GHD Services Inc.

Project: Behr, Peoria, IL

Collected: 08/26/15 thru 08/27/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC41122-16	S-082615-GW-16					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		7110 13600 4170	1800 1800 1800	650 480 270	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-17	S-082615-GW-17					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		2000 4150 1040	710 710 710	250 190 100	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-18	S-082615-GW-18					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		2720 4710 1260 J	1900 1900 1900	650 480 270	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-19	S-082615-GW-19					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		9480 13500 3140	1800 1800 1800	640 480 270	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-20	S-082615-GW-20					
Aroclor 1248 ^b Aroclor 1254 Aroclor 1260 ^a		15700 17300 2250	1800 1800 1800	650 480 270	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-21	S-082615-GW-21					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		13400 18700 4140	1700 1700 1700	610 450 250	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-22	S-082615-GW-22					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		6320 13000 3110	1800 1800 1800	650 480 270	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-23	S-082615-GW-23					
Aroclor 1248 ^a		6100	770	270	ug/kg	SW846 8082A

I oh Samula ID	Client Sample ID	Dogult/				
Analyte	Chefit Sample ID	Qual	RL	MDL	Units	Method
Aroclor 1254		9210	770	200	ug/kg	SW846 8082A
Aroclor 1260 a		1830	770	110	ug/kg	SW846 8082A
MC41122-24	S-082615-GW-24					
Aroclor 1248 a		7770	780	270	ug/kg	SW846 8082A
Aroclor 1254		9800	780	200	ug/kg	SW846 8082A
Aroclor 1260 a		2180	780	110	ug/kg	SW846 8082A
MC41122-25	S-082615-GW-25					
Aroclor 1248		10900	1800	630	ug/kg	SW846 8082A
Aroclor 1254 a		9790	1800	470	ug/kg	SW846 8082A
Aroclor 1260 ^a		2360	1800	260	ug/kg	SW846 8082A
MC41122-26	S-082615-GW-26					
Aroclor 1248 a		10700	1800	640	ug/kg	SW846 8082A
Aroclor 1254		14100	1800	480	ug/kg	SW846 8082A
Aroclor 1260 ^a		3350	1800	270	ug/kg	SW846 8082A
MC41122-27	S-082615-GW-27					
Aroclor 1248 a		11500	1900	660	ug/kg	SW846 8082A
Aroclor 1254		13800	1900	490	ug/kg	SW846 8082A
Aroclor 1260 a		2930	1900	280	ug/kg	SW846 8082A
MC41122-28	S-082615-GW-28					
Aroclor 1248 ^a		7850	1800	630	ug/kg	SW846 8082A
Aroclor 1254		12400	1800	470	ug/kg	SW846 8082A
Aroclor 1260 a		2820	1800	260	ug/kg	SW846 8082A
MC41122-29	S-082615-GW-29					
Aroclor 1248 a		13200	1800	630	ug/kg	SW846 8082A
Aroclor 1254		17500	1800	470	ug/kg	SW846 8082A
Aroclor 1260 ^a		4460	1800	260	ug/kg	SW846 8082A
MC41122-30	S-082615-GW-30					
Aroclor 1248 a		11300	1800	650	ug/kg	SW846 8082A
Aroclor 1254		15000	1800	480	ug/kg	SW846 8082A
Aroclor 1260 a		2690	1800	270	ug/kg	SW846 8082A

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC41122-31	S-082615-GW-31					_
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		8260 12200 2860	1800 1800 1800	620 460 260	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-32	S-082615-GW-32					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		21300 22100 3410	1900 1900 1900	680 500 280	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-33	S-082615-GW-33					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		22700 39800 5930	3800 3800 3800	1400 1000 560	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-34	S-082615-GW-34					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		20600 69100 8790	7700 7700 7700	2700 2000 1100	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-35	S-082615-GW-35					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		6120 10800 4310	1800 1800 1800	630 470 260	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-36	S-082615-GW-36					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		8540 14100 3010	1800 1800 1800	640 480 270	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-37	S-082615-GW-37					
Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a		9560 15400 3590	1800 1800 1800	630 460 260	ug/kg ug/kg ug/kg	SW846 8082A SW846 8082A SW846 8082A
MC41122-38	S-082615-GW-38					
Aroclor 1248 ^a		3560	730	260	ug/kg	SW846 8082A

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method	
Aroclor 1254		6230	730	190	ug/kg	SW846 8082A	
Aroclor 1260 a		1640	730	110	ug/kg	SW846 8082A	
MC41122-39	S-082615-GW-39						
Aroclor 1248 ^a		4100	400	140	ug/kg	SW846 8082A	
Aroclor 1254 Aroclor 1260 a		4200 762	400 40	110 5.9	ug/kg ug/kg	SW846 8082A SW846 8082A	
MC41122-40	S-082615-GW-40	702	40	3.9	ug/ kg	5 W 040 0002A	
WIC-11122-40	5-002013-G W-40						
Aroclor 1248 a		2100	400	140	ug/kg	SW846 8082A	
Aroclor 1254		3470	400	100	ug/kg	SW846 8082A	
Aroclor 1260 a		863	400	58	ug/kg	SW846 8082A	
MC41122-41	S-082615-GW-41						
Aroclor 1248 a		5070	720	250	ug/kg	SW846 8082A	
Aroclor 1254		8570	720	190	ug/kg	SW846 8082A	
Aroclor 1260 a		2670	720	110	ug/kg	SW846 8082A	
MC41122-42	S-082615-GW-42						
Aroclor 1248 a		4620	730	260	ug/kg	SW846 8082A	
Aroclor 1254		7070	730	190	ug/kg	SW846 8082A	
Aroclor 1260 a		1760	730	110	ug/kg	SW846 8082A	
MC41122-43	S-082715-GW-43						
Aroclor 1248 a		4270	690	240	ug/kg	SW846 8082A	
Aroclor 1254		7630	690	180	ug/kg	SW846 8082A	
Aroclor 1260 a		1860	690	100	ug/kg	SW846 8082A	
MC41122-44	S-082715-GW-44						
Aroclor 1248 a		3180	690	240	ug/kg	SW846 8082A	
Aroclor 1254		5680	690	180	ug/kg	SW846 8082A	
Aroclor 1260 a		1580	690	100	ug/kg	SW846 8082A	
MC41122-45	S-082715-GW-45						
Aroclor 1248 a		902	200	71	ug/kg	SW846 8082A	
Aroclor 1254		1460	200	53	ug/kg	SW846 8082A	
Aroclor 1260 a		322	41	6.0	ug/kg	SW846 8082A	

Job Number: MC41122 Account: GHD Services Inc.

Project: Behr, Peoria, IL **Collected:** 08/26/15 thru 08/27/15

Lab Sample ID Client Sample II Analyte	O Result/ Qual	RL	MDL	Units	Method
MC41122-46 S-082715-GW-5	1				
Bulk Density (Dry Basis) ^c Ignitability (Flashpoint) Paint Filter Test Solids, Total Total Organic Halides ^c pH Barium Cadmium Chromium Lead	1.1 > 230 < 0.50 883000 24.3 8.0 2.3 0.19 0.0035 B 0.25	0.50 100 24 0.50 0.0040 0.010 0.010	0.0010 0.00043 0.00048 0.0017	g/ml Deg. F ml/100g mg/kg mg/kg su mg/l mg/l mg/l	ASTM D2937-94 M SW846 1020 SW846 9095 SM 2540B-11 MOD. SW846 9023 SW846 9045D SW846 6010C SW846 6010C SW846 6010C SW846 6010C
MC41122-47 S-082715-GW-52	2				
Bulk Density (Dry Basis) ^c Ignitability (Flashpoint) Paint Filter Test Solids, Total pH Barium Cadmium Chromium Lead	1.3 > 230 < 0.50 866000 8.3 2.0 0.11 0.0033 B 0.50	0.50 90 0.50 0.0040 0.010 0.010	0.0010 0.00043 0.00048 0.0017	g/ml Deg. F ml/100g mg/kg su mg/l mg/l mg/l mg/l	ASTM D2937-94 M SW846 1020 SW846 9095 SM 2540B-11 MOD. SW846 9045D SW846 6010C SW846 6010C SW846 6010C SW846 6010C
MC41122-48 S-082715-GW-5	3				
Bulk Density (Dry Basis) ^c Ignitability (Flashpoint) Paint Filter Test Solids, Total Total Organic Halides ^c pH Barium Cadmium Chromium Lead	1.2 > 230 < 0.50 892000 37.7 8.2 2.5 0.13 0.0022 B	0.50 110 23 0.50 0.0040 0.010 0.010	0.0010 0.00043 0.00048 0.0017	g/ml Deg. F ml/100g mg/kg mg/kg su mg/l mg/l mg/l mg/l	ASTM D2937-94 M SW846 1020 SW846 9095 SM 2540B-11 MOD. SW846 9023 SW846 9045D SW846 6010C SW846 6010C SW846 6010C SW846 6010C
MC41122-49 S-082715-GW-54	1				
Bulk Density (Dry Basis) ^c Ignitability (Flashpoint) Paint Filter Test Solids, Total pH	1.3 > 230 < 0.50 907000 8.1	0.50 82		g/ml Deg. F ml/100g mg/kg su	ASTM D2937-94 M SW846 1020 SW846 9095 SM 2540B-11 MOD. SW846 9045D

Summary of Hits

Job Number: MC41122

Account: GHD Services Inc.

Project: Behr, Peoria, IL

Collected: 08/26/15 thru 08/27/15

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Barium		2.7	0.50	0.0010	mg/l	SW846 6010C
Cadmium		0.14	0.0040	0.00043	mg/l	SW846 6010C
Chromium		0.0029 B	0.010	0.00048	mg/l	SW846 6010C
Lead		2.8	0.010	0.0017	mg/l	SW846 6010C
MC41122-50	S-082715-GW-46					
Aroclor 1248 a		1740	420	150	ug/kg	SW846 8082A
Aroclor 1254		2490	420	110	ug/kg	SW846 8082A
Aroclor 1260 a		525	42	6.1	ug/kg	SW846 8082A
MC41122-51	S-082715-GW-47					
Aroclor 1248 ^a		8720	1800	640	ug/kg	SW846 8082A
Aroclor 1254		11600	1800	480	ug/kg	SW846 8082A
Aroclor 1260 a		2570	1800	270	ug/kg	SW846 8082A
MC41122-52	S-082715-GW-48					
Aroclor 1248 a		10900	3600	1300	ug/kg	SW846 8082A
Aroclor 1254		28200	3600	930	ug/kg	SW846 8082A
Aroclor 1260 a		4150	3600	520	ug/kg	SW846 8082A
MC41122-53	S-082715-GW-49					
Aroclor 1248 a		4010	710	250	ug/kg	SW846 8082A
Aroclor 1254		6710	710	190	ug/kg	SW846 8082A
Aroclor 1260 a		1620	710	100	ug/kg	SW846 8082A
MC41122-54	S-082715-GW-50					
Aroclor 1248 a		4970	1700	610	ug/kg	SW846 8082A
Aroclor 1254		9610	1700	450	ug/kg	SW846 8082A
Aroclor 1260 a		2240	1700	250	ug/kg	SW846 8082A

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Estimated value due to the presence of other Aroclor pattern. Confirmation value > 40 % RPD.
- (c) Analysis performed at Accutest Laboratories, Dayton, NJ.

Sample Results
Report of Analysis

Page 1 of 1

Report of Analysis

Client Sample ID: S-082615-GW-01

Project: Behr, Peoria, IL

Lab Sample ID:	MC41122-1	Date Sampled:	08/26/15
Matrix:	SO - Soil	Date Received:	08/29/15
Method:	SW846 8082A SW846 3540C	Percent Solids:	91.0
Droject.	Pohr Poorio II		

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51435.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64508.D	50	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51338.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml
Run #3	15.1 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1260 b	ND ND ND ND 6770 ° 10100 ° 2340 °	36 36 36 36 1800 1800	10 9.1 11 11 640 480 270	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	92% 90% 135% 123%	0% d 0% d 0% d	98% 97% 122% 118%	35-136% 35-136% 24-171% 24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/26/15

Report of Analysis

Client Sample ID: S-082615-GW-02 Lab Sample ID: MC41122-2

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 83.4

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51436.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64509.D	100	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51339.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml
Run #3	15.3 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 c Aroclor 1260 c	ND ND ND ND 42900 ^b 38900 ^b 3970 ^b	40 40 40 40 4000 4000 4000	11 9.9 12 12 1400 1000 580	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	J

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	95%	0% d	103%	35-136%
877-09-8	Tetrachloro-m-xylene	89%	0% d	86%	35-136%
2051-24-3	Decachlorobiphenyl	122%	0% d	127%	24-171%
2051-24-3	Decachlorobiphenyl	119%	0% d	133%	24-171%

- (a) Confirmation run.
- (b) Result is from Run# 2
- (c) Estimated value due to the presence of other Aroclor pattern.
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Date Sampled: 08/26/15

Report of Analysis

Client Sample ID: S-082615-GW-03 Lab Sample ID: MC41122-3

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 89.8

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51437.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64510.D	100	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51340.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.3 g	10.0 ml
Run #2	15.3 g	10.0 ml
Run #3	15.0 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 c Aroclor 1260 c	ND ND ND 15200 b 13000 b 2620 b	36 36 36 36 3600 3600 3600	10 9.1 11 11 1300 950 530	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	J

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	109%	0% d	52%	35-136%
877-09-8	Tetrachloro-m-xylene	98%	0% d	54%	35-136%
2051-24-3	Decachlorobiphenyl	136%	0% d	65%	24-171%
2051-24-3	Decachlorobiphenyl	129%	0% d	64%	24-171%

- (a) Confirmation run.
- (b) Result is from Run# 2
- (c) Estimated value due to the presence of other Aroclor pattern.
- (d) Outside control limits due to dilution.

ND = Not detected

 $MDL = \ Method \ Detection \ Limit$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/26/15

Date Received: 08/29/15

Percent Solids: 87.8

Report of Analysis

Client Sample ID: S-082615-GW-04 Lab Sample ID: MC41122-4

Matrix: SO - Soil

Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51438.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64511.D	100	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51341.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.9 g	10.0 ml
Run #2	15.9 g	10.0 ml
Run #3	15.0 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1260 b	ND ND ND ND 12500 ° 14800 ° 3100 °	36 36 36 36 3600 3600 3600	10 8.9 11 11 1300 930 520	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	J

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	99%	0% d	97%	35-136%
877-09-8	Tetrachloro-m-xylene	93%	0% d	98%	35-136%
2051-24-3	Decachlorobiphenyl	127%	0% d	119%	24-171%
2051-24-3	Decachlorobiphenyl	146%	0% d	119%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 1 of 1

Report of Analysis

Client Sample ID: S-082615-GW-05

Lab Sample ID: MC41122-5 **Matrix:** SO - Soil

Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL

Date Sampled:	08/26/15
Date Received:	08/29/15
Percent Solids:	88.3

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51439.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64512.D	100	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51342.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.4 g	10.0 ml
Run #2	15.4 g	10.0 ml
Run #3	15.8 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1260 b	ND ND ND ND 11000 ° 15900 ° 3140 °	37 37 37 37 3700 3700 3700	10 9.2 11 11 1300 960 540	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	J

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	99%	0% d	99%	35-136%
877-09-8	Tetrachloro-m-xylene	91%	0% d	98%	35-136%
2051-24-3	Decachlorobiphenyl	127%	0% d	120%	24-171%
2051-24-3	Decachlorobiphenyl	138%	0% d	132%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Date Sampled: 08/26/15

Report of Analysis

Client Sample ID: S-082615-GW-06 Lab Sample ID: MC41122-6

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 88.9

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51440.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64513.D	20	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51343.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml
Run #3	15.7 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1260 b	ND ND ND ND 5130 ° 5740 ° 1300 °	37 37 37 37 740 740 740	10 9.3 11 12 260 190 110	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	101%	0% d	35%	35-136%
877-09-8	Tetrachloro-m-xylene	97%	0% d	37%	35-136%
2051-24-3	Decachlorobiphenyl	145%	0% d	52%	24-171%
2051-24-3	Decachlorobiphenyl	145%	0% d	50%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Ċ

Client Sample ID: S-082615-GW-07 Lab Sample ID: MC41122-7

 Lab Sample ID:
 MC41122-7
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 89.8

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51441.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64514.D	20	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51344.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.8 g	10.0 ml
Run #2	15.8 g	10.0 ml
Run #3	15.1 g	10.0 ml

PCB List

12674-11-2 Aroclor 1016 ND 35 10 ug/kg 11104-28-2 Aroclor 1221 ND 35 8.8 ug/kg	CAS No.	Compound	Result	RL	MDL	Units	Q
11141-16-5 Aroclor 1232 ND 35 10 ug/kg 53469-21-9 Aroclor 1242 ND 35 11 ug/kg 12672-29-6 Aroclor 1248 b 4070 c 710 250 ug/kg 11097-69-1 Aroclor 1254 7380 c 710 180 ug/kg 11096-82-5 Aroclor 1260 b 1640 c 710 100 ug/kg	11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254	ND ND ND 4070 ° 7380 °	35 35 35 710 710	8.8 10 11 250 180	ug/kg ug/kg ug/kg ug/kg ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	98%	0% d	98%	35-136%
877-09-8	Tetrachloro-m-xylene	94%	0% d	96%	35-136%
2051-24-3	Decachlorobiphenyl	132%	0% d	118%	24-171%
2051-24-3	Decachlorobiphenyl	120%	0% d	124%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: S-082615-GW-08 Lab Sample ID: MC41122-8

 Lab Sample ID:
 MC41122-8
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 87.7

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51443.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64515.D	50	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51345.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	16.0 g	10.0 ml
Run #2	16.0 g	10.0 ml
Run #3	15.5 g	10.0 ml

PCB List

Compound	Result	RL	MDL	Units	Q
Aroclor 1016	ND	36	10	ug/kg	
Aroclor 1221	ND	36	8.9	ug/kg	
Aroclor 1232	ND	36	10	ug/kg	
Aroclor 1242	ND	36	11	ug/kg	
Aroclor 1248 b	5300 ^c	1800	630	ug/kg	
Aroclor 1254	7900 ^c	1800	470	ug/kg	
Aroclor 1260 b	2030 ^c	1800	260	ug/kg	
Surrogate Recoveries	Run# 1	Run# 2	Run	# 3	Limits
Totas chloro me vivleno	1000/	oov d	000/	,	25 126
	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1260 b	Aroclor 1016 ND Aroclor 1221 ND Aroclor 1232 ND Aroclor 1242 ND Aroclor 1248 b 5300 c Aroclor 1254 7900 c Aroclor 1260 b 2030 c Surrogate Recoveries Run# 1	Aroclor 1016	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1254 Aroclor 1260 b Surrogate Recoveries ND 36 10 36 10 36 10 36 11 40 36 11 800 630 11 800 470 1800 2030 c 1800 1800 260 Run#1 Run#2 Run#2 Run#2	Aroclor 1016 Aroclor 1221 ND 36 8.9 ug/kg Aroclor 1232 ND 36 10 ug/kg Aroclor 1242 ND 36 11 ug/kg Aroclor 1248 ND 36 11 ug/kg Aroclor 1248 ND 36 11 ug/kg Aroclor 1254 7900 c 1800 630 ug/kg Aroclor 1254 7900 c 1800 470 ug/kg Aroclor 1260 b 2030 c 1800 260 ug/kg Surrogate Recoveries Run# 1 Run# 2 Run# 3

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	100%	0% d	90%	35-136%
877-09-8	Tetrachloro-m-xylene	99%	0% d	84%	35-136%
2051-24-3	Decachlorobiphenyl	123%	0% d	118%	24-171%
2051-24-3	Decachlorobiphenyl	142%	0% d	124%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/26/15

90.8

Report of Analysis

Client Sample ID: S-082615-GW-09 Lab Sample ID: MC41122-9

Matrix: SO - Soil **Date Received:** 08/29/15 Method: SW846 8082A SW846 3540C **Percent Solids:**

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51445.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64516.D	50	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51347.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml
Run #3	15.0 g	10.0 ml

PCB List

12674-11-2 Aroclor 1016 ND 36 10 ug/kg 11104-28-2 Aroclor 1221 ND 36 9.1 ug/kg	Result RL MDL Units Q
11104-28-2 Aroctor 1221 ND 36 9.1 ug/kg 11141-16-5 Aroctor 1232 ND 36 11 ug/kg 53469-21-9 Aroctor 1242 ND 36 11 ug/kg 12672-29-6 Aroctor 1248 b 8980 c 1800 640 ug/kg 11097-69-1 Aroctor 1254 11700 c 1800 470 ug/kg 11096-82-5 Aroctor 1260 b 2330 c 1800 270 ug/kg	ND 36 9.1 ug/kg ND 36 11 ug/kg ND 36 11 ug/kg ND 36 11 ug/kg 8980 c 1800 640 ug/kg 11700 c 1800 470 ug/kg

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	82% 87% 131% 95%	0% d 0% d 0% d	95% 95% 116% 111%	35-136% 35-136% 24-171% 24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082615-GW-10 Lab Sample ID: MC41122-10

Date Sampled: 08/26/15 Matrix: SO - Soil **Date Received:** 08/29/15 Method: SW846 8082A SW846 3540C Percent Solids: 91.1

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51446.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64517.D	50	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51348.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml
Run #3	15.3 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	10	ug/kg	
11104-28-2	Aroclor 1221	ND	36	9.1	ug/kg	
11141-16-5	Aroclor 1232	ND	36	11	ug/kg	
53469-21-9	Aroclor 1242	ND	36	11	ug/kg	
12672-29-6	Aroclor 1248 b	8040 ^c	1800	640	ug/kg	
11097-69-1	Aroclor 1254	12200 ^c	1800	480	ug/kg	
11096-82-5	Aroclor 1260 b	3000 ^c	1800	270	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run	#3 I	imit

CAS No. Surrogate Recoveries		Run# 1	Run# 2	Run# 3	Limits
0.55	m	10.50/	on d	0.50	0.5.10.504
877-09-8	Tetrachloro-m-xylene	106%	0% d	95%	35-136%
877-09-8	Tetrachloro-m-xylene	103%	0% d	89%	35-136%
2051-24-3	Decachlorobiphenyl	149%	0% d	130%	24-171%
2051-24-3	Decachlorobiphenyl	142%	0% d	121%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/26/15

Report of Analysis

Client Sample ID: S-082615-GW-11 Lab Sample ID: MC41122-11

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 89.0

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51447.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64519.D	20	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51349.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml
Run #3	15.5 g	10.0 ml

PCB List

12674-11-2 Aroclor 1016 ND 37 10 11104-28-2 Aroclor 1221 ND 37 9.2 11141-16-5 Aroclor 1232 ND 37 11 53469-21-9 Aroclor 1242 ND 37 11 12672-29-6 Aroclor 1248 b 3450 c 740 260 11097-69-1 Aroclor 1254 4200 c 740 190 11096-82-5 Aroclor 1260 b 1560 c 740 110	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8 877-09-8 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	106% 102% 117%	0% d 0% d	100% 97% 103%	35-136% 35-136% 24-171%
2051-24-3	Decachlorobiphenyl	120%	0% d	105%	24-17

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082615-GW-12 Lab Sample ID: MC41122-12

 Lab Sample ID:
 MC41122-12
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 89.5

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51448.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64520.D	10	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51350.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.5 g	10.0 ml
Run #2	15.5 g	10.0 ml
Run #3	15.4 g	10.0 ml

PCB List

12674-11-2 Aroclor 1016 ND 36 10 ug/kg 11104-28-2 Aroclor 1221 ND 36 9.0 ug/kg 11141-16-5 Aroclor 1232 ND 36 11 ug/kg 53469-21-9 Aroclor 1242 ND 36 11 ug/kg 12672-29-6 Aroclor 1248 b 2800 c 360 130 ug/kg 11097-69-1 Aroclor 1254 3480 c 360 94 ug/kg 11096-82-5 Aroclor 1260 b 1120 c 360 53 ug/kg	CAS No.	Compound	Result	RL	MDL	Units	Q
	11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254	ND ND ND 2800 ° 3480 °	36 36 36 360 360	9.0 11 11 130 94	ug/kg ug/kg ug/kg ug/kg ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	107%	108%	96%	35-136%
877-09-8	Tetrachloro-m-xylene	106%	111%	94%	35-136%
2051-24-3	Decachlorobiphenyl	117%	139%	104%	24-171%
2051-24-3	Decachlorobiphenyl	110%	167%	104%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/26/15

Client Sample ID: S-082615-GW-13 **Lab Sample ID:** MC41122-13

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 95.9

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51449.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64521.D	50	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51351.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.0 g	10.0 ml
Run #2	15.0 g	10.0 ml
Run #3	15.4 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	9.9	ug/kg	
11104-28-2	Aroclor 1221	ND	35	8.7	ug/kg	
11141-16-5	Aroclor 1232	ND	35	10	ug/kg	
53469-21-9	Aroclor 1242	ND	35	11	ug/kg	
12672-29-6	Aroclor 1248 b	7450 ^c	1700	610	ug/kg	;
11097-69-1	Aroclor 1254	12500 ^c	1700	450	ug/kg	
11096-82-5	Aroclor 1260 b	3120 ^c	1700	260	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run#	‡ 3	Limits
077 00 0	T-41-11	050/	oo/ d	1020/		25 120

CAS No.	Surrogate Recoveries	Kull# 1	Kull# 2	Kuli# 3	Lillius
877-09-8	Tetrachloro-m-xylene	95%	0% d	102%	35-136%
877-09-8	Tetrachloro-m-xylene	91%	0% d	91%	35-136%
2051-24-3	Decachlorobiphenyl	134%	0% d	143%	24-171%
2051-24-3	Decachlorobiphenyl	137%	0% d	146%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Client Sample ID: S-082615-GW-14 Lab Sample ID: MC41122-14

 Lab Sample ID:
 MC41122-14
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 89.1

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51560.D	1	09/16/15	NK	09/15/15	OP44631	GBK1612
Run #2	BK51564.D	100	09/16/15	NK	09/15/15	OP44631	GBK1612
Run #3 a	BK51352.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.0 g	10.0 ml
Run #2	15.0 g	10.0 ml
Run #3	15.7 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1260 b	ND ND ND ND 16500 ° 19800 ° 3130 °	37 37 37 37 3700 3700 3700	11 9.4 11 12 1300 980 550	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	J

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	97% 89% 120% 116%	0% d 0% d 0% d	98% 97% 110% 101%	35-136% 35-136% 24-171% 24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/26/15

Date Received: 08/29/15

Percent Solids: 91.7

Client Sample ID: S-082615-GW-15 Lab Sample ID: MC41122-15

Matrix: SO - Soil Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51451.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64523.D	50	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51353.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml
Run #3	15.1 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1260 b	ND ND ND ND 8020 ° 11000 ° 2650 °	36 36 36 36 1800 1800	10 9.0 11 11 630 470 260	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	99%	0% d	102%	35-136%
877-09-8	Tetrachloro-m-xylene	98%	0% d	95%	35-136%
2051-24-3	Decachlorobiphenyl	138%	0% d	132%	24-171%
2051-24-3	Decachlorobiphenyl	125%	0% d	120%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082615-GW-16 Lab Sample ID: MC41122-16

 Lab Sample ID:
 MC41122-16
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 89.5

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51452.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64524.D	50	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51354.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml
Run #3	15.4 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1260 b	ND ND ND ND 7110 ° 13600 ° 4170 °	37 37 37 37 1800 1800	10 9.2 11 11 650 480 270	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	105%	0% d	101%	35-136%
877-09-8	Tetrachloro-m-xylene	96%	0% d	101%	35-136%
2051-24-3	Decachlorobiphenyl	149%	0% d	136%	24-171%
2051-24-3	Decachlorobiphenyl	144%	0% d	128%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

 $MDL = \ Method \ Detection \ Limit$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082615-GW-17 Lab Sample ID: MC41122-17

 Lab Sample ID:
 MC41122-17
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 89.8

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51454.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64525.D	20	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51355.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.7 g	10.0 ml
Run #2	15.7 g	10.0 ml
Run #3	15.4 g	10.0 ml

PCB List

12674-11-2 Aroclor 1016 ND 36 10 ug/kg 11104-28-2 Aroclor 1221 ND 36 8.9 ug/kg	CAS No.	Compound	Result	RL	MDL	Units	Q
11141-16-5 Aroclor 1232 ND 36 10 ug/kg 53469-21-9 Aroclor 1242 ND 36 11 ug/kg 12672-29-6 Aroclor 1248 b 2000 c 710 250 ug/kg 11097-69-1 Aroclor 1254 4150 c 710 190 ug/kg 11096-82-5 Aroclor 1260 b 1040 c 710 100 ug/kg	11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254	ND ND ND 2000 ° 4150 °	36 36 36 710 710	8.9 10 11 250 190	ug/kg ug/kg ug/kg ug/kg ug/kg	

CAS No. Surrogate	Recoveries	Run# 1	Run# 2	Run# 3	Limits
	1 2	80% 81% 109% 107%	0% d 0% d 0% d	98% 92% 149% 128%	35-136% 35-136% 24-171% 24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

L

Page 1 of 1

Date Sampled: 08/26/15

Client Sample ID: S-082615-GW-18 Lab Sample ID: MC41122-18

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 89.5

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51455.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
Run #2	BB64526.D	50	09/14/15	NK	09/11/15	OP44590	GBB3483
Run #3 a	BK51356.D	1	09/10/15	NK	09/02/15	OP44467	GBK1606

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml
Run #3	16.0 g	10.0 ml

PCB List

12674-11-2 Aroclor 1016 ND 37 11 ug/kg 11104-28-2 Aroclor 1221 ND 37 9.3 ug/kg	Q
11141-16-5 Aroclor 1232 ND 37 11 ug/kg 53469-21-9 Aroclor 1242 ND 37 12 ug/kg 12672-29-6 Aroclor 1248 b 2720 c 1900 650 ug/kg 11097-69-1 Aroclor 1254 4710 c 1900 480 ug/kg 11096-82-5 Aroclor 1260 b 1260 c 1900 270 ug/kg	J

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	45%	0% d	103%	35-136%
877-09-8	Tetrachloro-m-xylene	46%	0% d	109%	35-136%
2051-24-3	Decachlorobiphenyl	70%	0% d	139%	24-171%
2051-24-3	Decachlorobiphenyl	69%	0% d	120%	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to dilution.

ND = Not detected

 $MDL = \ Method \ Detection \ Limit$

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/26/15

91.2

Client Sample ID: S-082615-GW-19 Lab Sample ID: MC41122-19

Matrix: SO - Soil **Date Received:** 08/29/15 Method: SW846 8082A SW846 3540C **Percent Solids:**

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51456.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51501.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.0 g	10.0 ml
Run #2	15.0 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 a Aroclor 1254	ND ND ND ND 9480 b 13500 b 3140 b	37 37 37 37 1800 1800	10 9.1 11 11 640 480 270	ug/kg ug/kg ug/kg ug/kg ug/kg	
11096-82-5 CAS No. 877-09-8	Aroclor 1260 ^a Surrogate Recoveries Tetrachloro-m-xylene	Run# 1 115%	1800 Run# 2	Limi 35-13	-~	
877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	107% 145% 158%	0% c 0% c	35-13 24-17 24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/26/15

Date Received: 08/29/15

Percent Solids: 88.9

Client Sample ID: S-082615-GW-20 Lab Sample ID: MC41122-20

 Matrix:
 SO - Soil

 Method:
 SW846 8082A

 SW846 3540C

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51457.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51502.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 a Aroclor 1254 Aroclor 1260 c	ND ND ND 15700 b 17300 b 2250 b	37 37 37 37 1800 1800	10 9.2 11 12 650 480 270	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	97% 90% 128% 100%	0% d 0% d 0% d	35-13 35-13 24-17 24-17	36% 71%	

- (a) Estimated value due to the presence of other Aroclor pattern. Confirmation value > 40 % RPD.
- (b) Result is from Run# 2
- (c) Estimated value due to the presence of other Aroclor pattern.
- (d) Outside control limits due to dilution.

ND = Not detected MDL =

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: S-082615-GW-21 Lab Sample ID: MC41122-21

Matrix: SO - Soil Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL Date Sampled: 08/26/15 **Date Received:** 08/29/15 **Percent Solids:**

93.0

DF File ID Analyzed By **Prep Date Prep Batch Analytical Batch** Run #1 BK51458.D 09/14/15 NK 09/09/15 OP44490 GBK1609 Run #2 BK51503.D 50 09/15/15 NK 09/09/15 OP44490 GBK1610

	Initial Weight	Final Volume
Run #1	15.5 g	10.0 ml
Run #2	15.5 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	9.8	ug/kg	
11104-28-2	Aroclor 1221	ND	35	8.7	ug/kg	
11141-16-5	Aroclor 1232	ND	35	10	ug/kg	
53469-21-9	Aroclor 1242	ND	35	11	ug/kg	
12672-29-6	Aroclor 1248 a	13400 b	1700	610	ug/kg	
11097-69-1	Aroclor 1254	18700 b	1700	450	ug/kg	
11096-82-5	Aroclor 1260 a	4140 b	1700	250	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	109%	0% c	35-1	.36%	
877-09-8	Tetrachloro-m-xylene	101%	0% c	35-1	36%	
2051-24-3	Decachlorobiphenyl	151%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	165%	0% c	24-1	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: S-082615-GW-22 Lab Sample ID:

Matrix: Method:

Project: Behr, Peoria, IL

MC41122-22 **Date Sampled:** 08/26/15 SO - Soil **Date Received:** 08/29/15 SW846 8082A SW846 3540C **Percent Solids:** 89.2

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51459.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51504.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.3 g	10.0 ml
Run #2	15.3 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	37	10	ug/kg	
11104-28-2	Aroclor 1221	ND	37	9.2	ug/kg	
11141-16-5	Aroclor 1232	ND	37	11	ug/kg	
53469-21-9	Aroclor 1242	ND	37	11	ug/kg	
12672-29-6	Aroclor 1248 a	6320 b	1800	650	ug/kg	
11097-69-1	Aroclor 1254	13000 b	1800	480	ug/kg	
11096-82-5	Aroclor 1260 a	3110 b	1800	270	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	79%	0% c	35-1	36%	
877-09-8	Tetrachloro-m-xylene	84%	0% c	35-1	36%	
2051-24-3	Decachlorobiphenyl	128%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	128%	0% c	24-1	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082615-GW-23 Lab Sample ID: MC41122-23

 Matrix:
 SO - Soil

 Method:
 SW846 8082A
 SW846 3540C

Project: Behr, Peoria, IL

Date Sampled: 08/26/15
Date Received: 08/29/15
W846 3540C
Percent Solids: 86.6

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51460.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51505.D	20	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.0 g	10.0 ml
Run #2	15.0 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	38	11	ug/kg	
11104-28-2	Aroclor 1221	ND	38	9.6	ug/kg	
11141-16-5	Aroclor 1232	ND	38	11	ug/kg	
53469-21-9	Aroclor 1242	ND	38	12	ug/kg	
12672-29-6	Aroclor 1248 a	6100 b	770	270	ug/kg	
11097-69-1	Aroclor 1254	9210 b	770	200	ug/kg	
11096-82-5	Aroclor 1260 a	1830 ^b	770	110	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Limits	
877-09-8	Tetrachloro-m-xylene	117%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	114%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	134%	0% c	24-17	71%	
2051-24-3	Decachlorobiphenyl	137%	0% c	24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082615-GW-24 Lab Sample ID: MC41122-24

 Matrix:
 SO - Soil

 Method:
 SW846 8082A
 SW846 3540C

Project: Behr, Peoria, IL

 Date Sampled:
 08/26/15

 Date Received:
 08/29/15

 SW846 3540C
 Percent Solids:
 85.3

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51461.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51506.D	20	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	39	11	ug/kg	
11104-28-2	Aroclor 1221	ND	39	9.7	ug/kg	
11141-16-5	Aroclor 1232	ND	39	11	ug/kg	
53469-21-9	Aroclor 1242	ND	39	12	ug/kg	
12672-29-6	Aroclor 1248 a	7770 b	780	270	ug/kg	
11097-69-1	Aroclor 1254	9800 b	780	200	ug/kg	
11096-82-5	Aroclor 1260 a	2180 b	780	110	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	108%	0% c	35-1	36%	
877-09-8	Tetrachloro-m-xylene	109%	0% c	35-1	36%	
2051-24-3	Decachlorobiphenyl	144%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	137%	0% c	24-1	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: S-082615-GW-25 Lab Sample ID: MC41122-25

 Matrix:
 SO - Soil

 Method:
 SW846 8082A
 SW846 3540C

Project: Behr, Peoria, IL

 Date Sampled:
 08/26/15

 Date Received:
 08/29/15

 Percent Solids:
 91.3

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51462.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51507.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.4 g	10.0 ml
Run #2	15.4 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	10	ug/kg	
11104-28-2	Aroclor 1221	ND	36	8.9	ug/kg	
11141-16-5	Aroclor 1232	ND	36	10	ug/kg	
53469-21-9	Aroclor 1242	ND	36	11	ug/kg	
12672-29-6	Aroclor 1248	10900 a	1800	630	ug/kg	
11097-69-1	Aroclor 1254 b	9790 a	1800	470	ug/kg	
11096-82-5	Aroclor 1260 b	2360 a	1800	260	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	69%	0% c	35-1	36%	
877-09-8	Tetrachloro-m-xylene	59%	0% c	35-1	36%	
2051-24-3	Decachlorobiphenyl	124%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	119%	0% c	24-1	71%	

- (a) Result is from Run# 2
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: S-082615-GW-26 Lab Sample ID: MC41122-26

Date Sampled: 08/26/15 Matrix: SO - Soil **Date Received:** 08/29/15 **Percent Solids:** 90.8

Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51463.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51508.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	10	ug/kg	
11104-28-2	Aroclor 1221	ND	36	9.1	ug/kg	
11141-16-5	Aroclor 1232	ND	36	11	ug/kg	
53469-21-9	Aroclor 1242	ND	36	11	ug/kg	
12672-29-6	Aroclor 1248 a	10700 b	1800	640	ug/kg	
11097-69-1	Aroclor 1254	14100 b	1800	480	ug/kg	
11096-82-5	Aroclor 1260 a	3350 b	1800	270	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	109%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	103%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	156%	0% c	24-17	71%	
2051-24-3	Decachlorobiphenyl	143%	0% c	24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

87.9

Client Sample ID: S-082615-GW-27 Lab Sample ID: MC41122-27

Date Sampled: 08/26/15 Matrix: SO - Soil **Date Received:** 08/29/15 **Percent Solids:**

Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51465.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51509.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	37	11	ug/kg	
11104-28-2	Aroclor 1221	ND	37	9.4	ug/kg	
11141-16-5	Aroclor 1232	ND	37	11	ug/kg	
53469-21-9	Aroclor 1242	ND	37	12	ug/kg	
12672-29-6	Aroclor 1248 ^a	11500 b	1900	660	ug/kg	
11097-69-1	Aroclor 1254	13800 b	1900	490	ug/kg	
11096-82-5	Aroclor 1260 a	2930 b	1900	280	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	101%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	95%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	144%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	134%	0% c	24-1	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

08/29/15

90.0

Client Sample ID: S-082615-GW-28 Lab Sample ID: MC41122-28

Date Sampled: 08/26/15 Matrix: SO - Soil **Date Received:** Method: SW846 8082A SW846 3540C **Percent Solids:**

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51466.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51510.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.5 g	10.0 ml
Run #2	15.5 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 a Aroclor 1254 Aroclor 1260 a	ND ND ND ND 7850 b 12400 b 2820 b	36 36 36 36 1800 1800	10 9.0 11 11 630 470 260	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
CAS No. 877-09-8	Surrogate Recoveries Tetrachloro-m-xylene	Run# 1	Run# 2	Limi 35-13	ts 36%	
877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	97% 133% 140%	0% c 0% c	35-13 24-17 24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082615-GW-29 Lab Sample ID: MC41122-29

 Lab Sample ID:
 MC41122-29
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 92.1

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51467.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51512.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	ND ND ND ND	36 36 36 36	10 9.0 11 11	ug/kg ug/kg ug/kg ug/kg	
12672-29-6 11097-69-1 11096-82-5	Aroclor 1248 a Aroclor 1254 Aroclor 1260 a	13200 b 17500 b 4460 b	1800 1800 1800	630 470 260	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8 877-09-8 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	105% 108% 139%	0% c 0% c 0% c	35-13 35-13 24-17	36%	
2051-24-3	Decachlorobiphenyl	134%	0% c	24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082615-GW-30 Lab Sample ID: MC41122-30 Matrix:

Method:

Project: Behr, Peoria, IL

Date Sampled: 08/26/15 SO - Soil **Date Received:** 08/29/15 SW846 8082A SW846 3540C **Percent Solids:** 90.4

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51468.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51513.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2	Aroclor 1016 Aroclor 1221	ND ND	37 37	10 9.2	ug/kg ug/kg	
11141-16-5	Aroclor 1221 Aroclor 1232	ND	37	11	ug/kg ug/kg	
53469-21-9 12672-29-6	Aroclor 1242 Aroclor 1248 ^a	ND 11300 b	37 1800	11 650	ug/kg ug/kg	
11097-69-1	Aroclor 1254	15000 b	1800	480	ug/kg	
11096-82-5	Aroclor 1260 ^a	2690 b	1800	270	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	103%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	94%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	129%	0% c	24-17	71%	
2051-24-3	Decachlorobiphenyl	122%	0% c	24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082615-GW-31 **Lab Sample ID:** MC41122-31

 Matrix:
 SO - Soil

 Method:
 SW846 8082A
 SW846 3540C

Project: Behr, Peoria, IL

 Date Sampled:
 08/26/15

 Date Received:
 08/29/15

 Percent Solids:
 89.8

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51469.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51514.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.8 g	10.0 ml
Run #2	15.8 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	10	ug/kg	
11104-28-2	Aroclor 1221	ND	35	8.8	ug/kg	
11141-16-5	Aroclor 1232	ND	35	10	ug/kg	
53469-21-9	Aroclor 1242	ND	35	11	ug/kg	
12672-29-6	Aroclor 1248 a	8260 b	1800	620	ug/kg	
11097-69-1	Aroclor 1254	12200 b	1800	460	ug/kg	
11096-82-5	Aroclor 1260 a	2860 b	1800	260	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	93%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	101%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	147%	0% c	24-17	71%	
2051-24-3	Decachlorobiphenyl	140%	0% c	24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: S-082615-GW-32

Project: Behr, Peoria, IL

Lab Sample ID: MC41122-32 **Date Sampled:** 08/26/15 Matrix: SO - Soil **Date Received:** 08/29/15 Method: SW846 8082A SW846 3540C **Percent Solids:** 85.9

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51470.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51515.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml

PCB List

CAS No. Compound		Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 a Aroclor 1254 Aroclor 1260 a	ND ND ND 21300 b 22100 b 3410 b	38 38 38 38 1900 1900	11 9.6 11 12 680 500 280	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
CAS No. Surrogate Recoveries 877-09-8 Tetrachloro-m-xylene		Run# 1 117% 113%	Run# 2	Limi 35-13 35-13	ts 36%	
877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	161% 135%	0% c 0% c	24-17 24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

08/26/15

08/29/15

86.3

Client Sample ID: S-082615-GW-33 Lab Sample ID: MC41122-33

Lab Sample ID:MC41122-33Date Sampled:Matrix:SO - SoilDate Received:Method:SW846 8082ASW846 3540CPercent Solids:

Project: Behr, Peoria, IL

DF File ID Analyzed By **Prep Date Prep Batch Analytical Batch** Run #1 BK51471.D 09/14/15 NK 09/09/15 OP44490 GBK1609 Run #2 BK51516.D 100 09/15/15 NK 09/09/15 OP44490 GBK1610

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 a Aroclor 1254	ND ND ND ND 22700 b 39800 b	38 38 38 38 3800 3800	11 9.6 11 12 1400 1000	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
11096-82-5	Aroclor 1260 a	5930 b	3800	560	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Limits	
877-09-8 877-09-8	Tetrachloro-m-xylene Tetrachloro-m-xylene	108% 101%	0% c	35-13 35-13	36%	
2051-24-3 2051-24-3	Decachlorobiphenyl Decachlorobiphenyl	151% 139%	0% c	24-17 24-17		

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Date Sampled: 08/26/15

Client Sample ID: S-082615-GW-34 Lab Sample ID: MC41122-34

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 82.9

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51472.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
Run #2	BK51517.D	200	09/15/15	NK	09/09/15	OP44490	GBK1610

	Initial Weight	Final Volume
Run #1	15.6 g	10.0 ml
Run #2	15.6 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 a Aroclor 1254 Aroclor 1260 a	ND ND ND ND 20600 b 69100 b 8790 b	39 39 39 39 7700 7700 7700	11 9.7 11 12 2700 2000 1100	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	107% 100% 153% 136%	0% c 0% c 0% c	35-13 35-13 24-17 24-17	36% 71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082615-GW-35 Lab Sample ID: MC41122-35

Project: Behr, Peoria, IL

Date Sampled: 08/26/15 Matrix: SO - Soil **Date Received:** 08/29/15 Method: SW846 8082A SW846 3540C **Percent Solids:** 88.9

	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51444.D	1	09/14/15	NK	09/09/15	OP44491	GBK1609
Run #2	BB64527.D	50	09/14/15	NK	09/09/15	OP44491	GBB3483

	Initial Weight	Final Volume
Run #1	15.7 g	10.0 ml
Run #2	15.7 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	10	ug/kg	
11104-28-2	Aroclor 1221	ND	36	9.0	ug/kg	
11141-16-5	Aroclor 1232	ND	36	11	ug/kg	
53469-21-9	Aroclor 1242	ND	36	11	ug/kg	
12672-29-6	Aroclor 1248 a	6120 b	1800	630	ug/kg	
11097-69-1	Aroclor 1254	10800 b	1800	470	ug/kg	
11096-82-5	Aroclor 1260 a	4310 b	1800	260	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
877-09-8	Tetrachloro-m-xylene	96%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	93%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	131%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	88%	0% c	24-1	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082615-GW-36 Lab Sample ID: MC41122-36

Matrix: Method:

Project: Behr, Peoria, IL

Date Sampled: 08/26/15 SO - Soil **Date Received:** 08/29/15 SW846 8082A SW846 3540C **Percent Solids:** 90.2

		File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
]	Run #1	BK51473.D	1	09/14/15	NK	09/04/15	OP44491	GBK1609
]	Run #2	BB64530.D	50	09/15/15	NK	09/04/15	OP44491	GBB3484

	Initial Weight	Final Volume
Run #1	15.1 g	10.0 ml
Run #2	15.1 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	37	10	ug/kg	
11104-28-2	Aroclor 1221	ND	37	9.2	ug/kg	
11141-16-5	Aroclor 1232	ND	37	11	ug/kg	
53469-21-9	Aroclor 1242	ND	37	11	ug/kg	
12672-29-6	Aroclor 1248 a	8540 b	1800	640	ug/kg	
11097-69-1	Aroclor 1254	14100 b	1800	480	ug/kg	
11096-82-5	Aroclor 1260 a	3010 b	1800	270	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	96%	0% c	35-1	36%	
877-09-8	Tetrachloro-m-xylene	91%	0% c	35-1	36%	
2051-24-3	Decachlorobiphenyl	118%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	121%	0% c	24-1	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/26/15

Client Sample ID: S-082615-GW-37 Lab Sample ID: MC41122-37

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 90.9

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51474.D	1	09/14/15	NK	09/04/15	OP44491	GBK1609
Run #2	BB64531.D	50	09/15/15	NK	09/04/15	OP44491	GBB3484

	Initial Weight	Final Volume
Run #1	15.5 g	10.0 ml
Run #2	15.5 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 ^a	ND ND ND ND 9560 b	36 36 36 36 1800	10 8.9 10 11 630	ug/kg ug/kg ug/kg ug/kg ug/kg	
11097-69-1 11096-82-5	Aroclor 1254 Aroclor 1260 ^a	15400 b 3590 b	1800 1800	460 260	ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8 877-09-8 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl	103% 100% 110%	0% c 0% c	35-13 35-13 24-17	36%	
2051-24-3	Decachlorobiphenyl	149%	0% c	24-17		

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: S-082615-GW-38 **Lab Sample ID:** MC41122-38

 Matrix:
 SO - Soil
 Date

 Method:
 SW846 8082A
 SW846 3540C
 Pero

Project: Behr, Peoria, IL

Date Sampled: 08/26/15 Date Received: 08/29/15 Percent Solids: 90.1

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51476.D	1	09/14/15	NK	09/04/15	OP44491	GBK1609
Run #2	BB64532.D	20	09/15/15	NK	09/04/15	OP44491	GBB3484

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	10	ug/kg	
11104-28-2	Aroclor 1221	ND	36	9.1	ug/kg	
11141-16-5	Aroclor 1232	ND	36	11	ug/kg	
53469-21-9	Aroclor 1242	ND	36	11	ug/kg	
12672-29-6	Aroclor 1248 a	3560 b	730	260	ug/kg	
11097-69-1	Aroclor 1254	6230 b	730	190	ug/kg	
11096-82-5	Aroclor 1260 a	1640 ^b	730	110	ug/kg	
CAS No.	Surrogate Recoveries Run# 1 Run# 2		Lim	its		
877-09-8	Tetrachloro-m-xylene	96%	0% c	35-1	36%	
877-09-8	Tetrachloro-m-xylene	95%	0% c	35-1	36%	
2051-24-3	Decachlorobiphenyl	120%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	110%	0% c	24-1	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

57 of 171

ACCUTEST

MC41122

LABORATORIES

Report of Analysis

Client Sample ID: S-082615-GW-39 Lab Sample ID: MC41122-39

 Matrix:
 SO - Soil

 Method:
 SW846 8082A
 SW846 3540C

Project: Behr, Peoria, IL

Date Sampled: 08/26/15 Date Received: 08/29/15 Percent Solids: 81.0

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51561.D	1	09/16/15	NK	09/15/15	OP44631	GBK1612
Run #2	BK51565.D	10	09/16/15	NK	09/15/15	OP44631	GBK1612
Run #3 a	BK51477.D	1	09/14/15	NK	09/09/15	OP44491	GBK1609

	Initial Weight	Final Volume
Run #1	15.3 g	10.0 ml
Run #2	15.3 g	10.0 ml
Run #3	15.3 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 b Aroclor 1254 Aroclor 1260 b	ND ND ND ND 4100 ° 4200 °	40 40 40 40 400 400 400	11 10 12 13 140 110 5.9	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 3	Limits
877-09-8	Tetrachloro-m-xylene	96%	100%	14% ^d	35-136%
877-09-8	Tetrachloro-m-xylene	94%	97%	13% ^d	35-136%
2051-24-3	Decachlorobiphenyl	113%	129%	20% d	24-171%
2051-24-3	Decachlorobiphenyl	106%	139%	21% ^d	24-171%

- (a) Confirmation run.
- (b) Estimated value due to the presence of other Aroclor pattern.
- (c) Result is from Run# 2
- (d) Outside control limits due to possible matrix interference.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082615-GW-40 Lab Sample ID: MC41122-40

 Lab Sample ID:
 MC41122-40
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 78.7

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51478.D	1	09/14/15	NK	09/04/15	OP44491	GBK1609
Run #2	BB64534.D	10	09/15/15	NK	09/04/15	OP44491	GBB3484

	Initial Weight	Final Volume
Run #1	16.0 g	10.0 ml
Run #2	16.0 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a	ND ND ND ND 2100 b 3470 b 863 b	40 40 40 40 400 400 400	11 10 12 12 140 100 58	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	£ 2 Limits		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	68% 69% 88% 89%	68% 63% 107% 127%	35-1 24-1	36% 36% 71% 71%	

(a) Estimated value due to the presence of other Aroclor pattern.

(b) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082615-GW-41 Lab Sample ID: MC41122-41

 Lab Sample ID:
 MC41122-41
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 91.6

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51479.D	1	09/14/15	NK	09/04/15	OP44491	GBK1609
Run #2	BB64535.D	20	09/15/15	NK	09/04/15	OP44491	GBB3484

	Initial Weight	Final Volume
Run #1	15.3 g	10.0 ml
Run #2	15.3 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	10	ug/kg	
11104-28-2	Aroclor 1221	ND	36	8.9	ug/kg	
11141-16-5 53469-21-9	Aroclor 1232 Aroclor 1242	ND ND	36 36	11 11	ug/kg	
12672-29-6	Aroclor 1248 a	5070 b	720	250	ug/kg ug/kg	
11097-69-1	Aroclor 1254	8570 b	720	190	ug/kg ug/kg	
11096-82-5	Aroclor 1260 a	2670 b	720	110	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
877-09-8	Tetrachloro-m-xylene	89%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	86%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	115%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	133%	0% c	24-1	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082615-GW-42 Lab Sample ID: MC41122-42

 Lab Sample ID:
 MC41122-42
 Date Sampled:
 08/26/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 89.9

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51480.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
Run #2	BB64536.D	20	09/15/15	NK	09/04/15	OP44491	GBB3484

	Initial Weight	Final Volume
Run #1	15.3 g	10.0 ml
Run #2	15.3 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	10	ug/kg	
11104-28-2	Aroclor 1221	ND	36	9.1	ug/kg	
11141-16-5	Aroclor 1232	ND	36	11	ug/kg	
53469-21-9	Aroclor 1242	ND	36	11	ug/kg	
12672-29-6	Aroclor 1248 a	4620 b	730	260	ug/kg	
11097-69-1	Aroclor 1254	7070 b	730	190	ug/kg	
11096-82-5	Aroclor 1260 ^a	1760 ^b	730	110	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Limits	
877-09-8	Tetrachloro-m-xylene	95%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	94%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	115%	0% c	24-1	71%	
2051-24-3	Decachlorobiphenyl	151%	0% c	24-1	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected M

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

c

Page 1 of 1

Date Sampled: 08/27/15

Date Received: 08/29/15

90.6

Percent Solids:

Client Sample ID: S-082715-GW-43 **Lab Sample ID:** MC41122-43

Matrix: SO - Soil

Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL

J								
	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run #1	BK51481.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609	
Run #2	BB64537.D	20	09/15/15	NK	09/04/15	OP44491	GBB3484	

	Initial Weight	Final Volume
Run #1	16.0 g	10.0 ml
Run #2	16.0 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	9.8	ug/kg	
11104-28-2	Aroclor 1221	ND	35	8.6	ug/kg	
11141-16-5	Aroclor 1232	ND	35	10	ug/kg	
53469-21-9	Aroclor 1242	ND	35	11	ug/kg	
12672-29-6	Aroclor 1248 a	4270 b	690	240	ug/kg	
11097-69-1	Aroclor 1254	7630 b	690	180	ug/kg	
11096-82-5	Aroclor 1260 a	1860 b	690	100	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	Limits	
877-09-8	Tetrachloro-m-xylene	92%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	93%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	128%	0% c	24-17	71%	
2051-24-3	Decachlorobiphenyl	121%	0% c	24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: S-082715-GW-44 Lab Sample ID: MC41122-44

 Lab Sample ID:
 MC41122-44
 Date Sampled:
 08/27/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8082A
 SW846 3540C
 Percent Solids:
 93.7

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51482.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
Run #2	BB64538.D	20	09/15/15	NK	09/04/15	OP44491	GBB3484

	Initial Weight	Final Volume
Run #1	15.4 g	10.0 ml
Run #2	15.4 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 a Aroclor 1254 Aroclor 1260 a	ND ND ND 3180 b 5680 b 1580 b	35 35 35 35 690 690	9.8 8.7 10 11 240 180 100	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
CAS No. 877-09-8 877-09-8	Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene	Run# 1 62% 59%	Run# 2	Limi 35-13 35-13	ts 36%	
2051-24-3 2051-24-3	Decachlorobiphenyl Decachlorobiphenyl	82% 92%	0% c 0% c	24-17 24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082715-GW-45 Lab Sample ID: MC41122-45

 Matrix:
 SO - Soil

 Method:
 SW846 8082A
 SW846 3540C

Project: Behr, Peoria, IL

Date Sampled: 08/27/15
Date Received: 08/29/15
Percent Solids: 78.5

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51483.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
Run #2	BB64539.D	5	09/15/15	NK	09/04/15	OP44491	GBB3484

	Initial Weight	Final Volume
Run #1	15.7 g	10.0 ml
Run #2	15.7 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2	Aroclor 1016 Aroclor 1221	ND ND	41 41	12 10	ug/kg ug/kg	
11141-16-5 53469-21-9	Aroclor 1232 Aroclor 1242	ND ND	41 41	12 13	ug/kg ug/kg	
12672-29-6 11097-69-1	Aroclor 1248 ^a Aroclor 1254	902 ^b 1460 ^b	200 200	71 53	ug/kg ug/kg	
11096-82-5	Aroclor 1260 ^a	322	41	6.0	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
877-09-8	Tetrachloro-m-xylene	63%	56%	35-1	36%	
877-09-8	Tetrachloro-m-xylene	64%	60%	35-1	36%	
2051-24-3	Decachlorobiphenyl	70%	83%	24-1	71%	
2051-24-3	Decachlorobiphenyl	69%	93%	24-1	71%	

(a) Estimated value due to the presence of other Aroclor pattern.

(b) Result is from Run# 2

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082715-GW-51

 Lab Sample ID:
 MC41122-46
 Date Sampled:
 08/27/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8260C
 SW846 1311
 Percent Solids:
 87.3

Project: Behr, Peoria, IL

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 H74857.D
 100
 09/12/15
 KP
 09/01/15
 GP19518
 MSH2490

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCLP Leachate

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units Q
71-43-2	Benzene	ND	D018	0.50	0.10	0.027	mg/l
78-93-3	2-Butanone (MEK)	ND	D035	200	1.0	0.30	mg/l
56-23-5	Carbon tetrachloride	ND	D019	0.50	0.20	0.034	mg/l
108-90-7	Chlorobenzene	ND	D021	100	0.20	0.024	mg/l
67-66-3	Chloroform	ND	D022	6.0	0.20	0.040	mg/l
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.20	0.037	mg/l
107-06-2	1,2-Dichloroethane	ND	D028	0.50	0.20	0.030	mg/l
75-35-4	1,1-Dichloroethene	ND	D029	0.70	0.20	0.028	mg/l
127-18-4	Tetrachloroethene	ND	D039	0.70	0.20	0.021	mg/l
79-01-6	Trichloroethene	ND	D040	0.50	0.20	0.025	mg/l
75-01-4	Vinyl chloride	ND	D043	0.20	0.20	0.045	mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Li	mits		
1868-53-7	Dibromofluoromethane	127%		74	-135%		
2037-26-5	Toluene-D8	113%		83	-116%		
460-00-4	4-Bromofluorobenzene	104%		76	5-124%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082715-GW-51

Lab Sample ID: MC41122-46 **Matrix:** SO - Soil

Method: SW846 8270D SW846 3510C

Project: Behr, Peoria, IL

Date Sampled: 08/27/15
Date Received: 08/29/15
Percent Solids: 87.3

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 X06955.D 1 09/08/15 MR 09/05/15 OP44507 MSX218

Run #2

Initial Volume Final Volume

Run #1 100 ml 1.0 ml

Run #2

ABN TCLP Leachate

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units Q
95-48-7	2-Methylphenol	ND	D023	200	0.10	0.0021	mg/l
	3&4-Methylphenol	ND	D024	200	0.10	0.0047	mg/l
87-86-5	Pentachlorophenol	ND	D037	100	0.10	0.0030	mg/l
95-95-4	2,4,5-Trichlorophenol	ND	D041	400	0.10	0.0034	mg/l
88-06-2	2,4,6-Trichlorophenol	ND	D042	2.0	0.10	0.0030	mg/l
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.050	0.0023	mg/l
121-14-2	2,4-Dinitrotoluene	ND	D030	0.13	0.10	0.015	mg/l
118-74-1	Hexachlorobenzene	ND	D032	0.13	0.050	0.0077	mg/l
87-68-3	Hexachlorobutadiene	ND	D033	0.50	0.050	0.0024	mg/l
67-72-1	Hexachloroethane	ND	D034	3.0	0.050	0.0029	mg/l
98-95-3	Nitrobenzene	ND	D036	2.0	0.050	0.0026	mg/l
110-86-1	Pyridine	ND	D038	5.0	0.10	0.013	mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Li	mits		
367-12-4	2-Fluorophenol	41%		10	-73%		
4165-62-2	Phenol-d5	32%		10	-58%		
118-79-6	2,4,6-Tribromophenol	97%		15	-125%		
4165-60-0	Nitrobenzene-d5	79%		23	-120%		
321-60-8	2-Fluorobiphenyl	67%		31	-102%		
1718-51-0	Terphenyl-d14	100%		42	-124%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

MCL = Maximum Contamination Level (40 CFR 261 6/96 E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082715-GW-51

Lab Sample ID: MC41122-46 **Matrix:** SO - Soil

Method: SW846 8151 SW846 3510C

Project: Behr, Peoria, IL

Date Sampled: 08/27/15
Date Received: 08/29/15
Percent Solids: 87.3

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchYZ94968.D109/11/15NK09/04/15OP44496GYZ7825

Run #1 Run #2

Initial Volume Final Volume

Run #1 100 ml 5.0 ml

Run #2

Herbicide TCLP Leachate

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW# M	CL RL	MDL	Units Q
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	ND ND	D016 10 D017 1.0		0.0046 0.0013	mg/l mg/l
75-72-1	2,4,5-11 (Silvex)	ND	D017 1.0	0.010	0.0013	mg/ i
G 1 G 37	G	D // 4	D ".	T. 1.		
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
CAS No. 19719-28-9 19719-28-9	Surrogate Recoveries 2,4-DCAA 2,4-DCAA	Run# 1 41% 52%	Run# 2	Limits 30-150% 30-150%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: S-082715-GW-51

Lab Sample ID: MC41122-46 **Matrix:** SO - Soil

Method: SW846 8081B SW846 3510C

1

Project: Behr, Peoria, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch

09/04/15

NK

Run #1 Run #2

Initial Volume Final Volume

Run #1 100 ml 5.0 ml

BE47934.D

Run #2

Pesticide TCLP Leachate

TCLP Leachate method SW846 1311

08/29/15

GBE2406

87.3

Date Sampled: 08/27/15

Date Received:

Percent Solids:

OP44497

CAS No.	Compound	Result	HW# MCL RL	MDL	Units Q
58-89-9 12789-03-6 72-20-8 76-44-8 1024-57-3 72-43-5 8001-35-2	gamma-BHC (Lindane) Chlordane Endrin Heptachlor Heptachlor epoxide Methoxychlor Toxaphene	ND	D013 0.40 0.00050 D020 0.030 0.0050 D012 0.020 0.00050 D031 0.0080 0.00050 D031 0.0080 0.00050 D014 10 0.00050 D015 0.50 0.025	0.00011 0.0011 0.00018 0.00014 0.000097 0.00017	mg/l mg/l mg/l mg/l mg/l mg/l
CAS No. 877-09-8 877-09-8 2051-24-3 2051-24-3	Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	Run# 1 78% 72% 94% 96%	Run# 2 Limits 30-150% 30-150% 30-150% 30-150%	0.0013	mg/1

09/12/15

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

MCL = Maximum Contamination Level (40 CFR 261 6/96 E = Indicates value exceeds calibration range

 $J = \ Indicates \ an \ estimated \ value$

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 1

Client Sample ID: S-082715-GW-51 Lab Sample ID: MC41122-46 Matrix: SO - Soil

Date Sampled: 08/27/15 **Date Received:** 08/29/15 **Percent Solids:** 87.3

Project: Behr, Peoria, IL

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	MDL	Units	DF	Prep	Analyzed By	Method
Arsenic	0.0017 U	D004	5.0	0.010	0.0017	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Barium	2.3	D005	100	0.50	0.0010	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Cadmium	0.19	D006	1.0	0.0040	0.00043	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Chromium	0.0035 B	D007	5.0	0.010	0.00048	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Lead	0.25	D008	5.0	0.010	0.0017	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Mercury	0.000096 U	D009	0.20	0.00020	0.00009	6mg/l	1	09/03/15	09/04/15 EC	SW846 7470A ²
Selenium	0.0020 U	D010	1.0	0.025	0.0020	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Silver	0.0010 U	D011	5.0	0.0050	0.0010	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹

(1) Instrument QC Batch: MA18427 (2) Instrument QC Batch: MA18429 (3) Prep QC Batch: MP25080 (4) Prep QC Batch: MP25083

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

MCL = Maximum Contamination Level (40 CFR 261 6/96) B = Indicates a result > = MDL but < RL

MC41122

Page 1 of 1

 Client Sample ID:
 S-082715-GW-51

 Lab Sample ID:
 MC41122-46

 Matrix:
 SO - Soil

Date Sampled: 08/27/15 **Date Received:** 08/29/15 **Percent Solids:** 87.3

Project: Behr, Peoria, IL

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Bulk Density (Dry Basis) ^a	1.1		g/ml	1	09/09/15	ANJ	ASTM D2937-94 M
3 \ 3		1.7	\mathcal{C}	1			
Cyanide Reactivity	< 1.7	1.7	mg/kg	1	09/01/15 15:25	BF	SW846 CHAP7
Ignitability (Flashpoint)	> 230		Deg. F	1	09/02/15	BF	SW846 1020
Paint Filter Test	< 0.50	0.50	ml/100g	1	09/08/15 16:08	CF	SW846 9095
Phenols	< 2.7	2.7	mg/kg	1	09/08/15 14:15	BF	SW846 9065 M
Solids, Percent	87.3		%	1	09/02/15	HS	SM 2540G-97 MOD
Solids, Total	883000	100	mg/kg	1	09/10/15	BF	SM 2540B-11 MOD.
Sulfide Reactivity	< 57	57	mg/kg	1	09/01/15	BF	SW846 CHAP7
Total Organic Halides ^a	24.3	24	mg/kg	1	09/14/15	ANJ	SW846 9023
pН	8.0		su	1	09/08/15	CF	SW846 9045D

(a) Analysis performed at Accutest Laboratories, Dayton, NJ.

Page 1 of 1

Client Sample ID: S-082715-GW-52

Lab Sample ID: MC41122-47 Matrix: SO - Soil

Method: SW846 8260C SW846 1311 **Percent Solids:** 87.6

Project: Behr, Peoria, IL

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 H74858.D
 100
 09/12/15
 KP
 09/01/15
 GP19518
 MSH2490

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCLP Leachate

TCLP Leachate method SW846 1311

08/29/15

Date Sampled: 08/27/15

Date Received:

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units Q
71-43-2	Benzene	ND	D018	0.50	0.10	0.027	mg/l
78-93-3	2-Butanone (MEK)	ND	D035	200	1.0	0.30	mg/l
56-23-5	Carbon tetrachloride	ND	D019	0.50	0.20	0.034	mg/l
108-90-7	Chlorobenzene	ND	D021	100	0.20	0.024	mg/l
67-66-3	Chloroform	ND	D022	6.0	0.20	0.040	mg/l
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.20	0.037	mg/l
107-06-2	1,2-Dichloroethane	ND	D028	0.50	0.20	0.030	mg/l
75-35-4	1,1-Dichloroethene	ND	D029	0.70	0.20	0.028	mg/l
127-18-4	Tetrachloroethene	ND	D039	0.70	0.20	0.021	mg/l
79-01-6	Trichloroethene	ND	D040	0.50	0.20	0.025	mg/l
75-01-4	Vinyl chloride	ND	D043	0.20	0.20	0.045	mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Li	mits		
1868-53-7	Dibromofluoromethane	127%		74	-135%		
2037-26-5	Toluene-D8	112%		83	-116%		
460-00-4	4-Bromofluorobenzene	104%		76	5-124%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: S-082715-GW-52

Lab Sample ID: MC41122-47 **Matrix:** SO - Soil

Method: SW846 8270D SW846 3510C

Project: Behr, Peoria, IL

Date Sampled: 08/27/15 Date Received: 08/29/15 Percent Solids: 87.6

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1X06956.D109/08/15MR09/05/15OP44507MSX218

Run #2

Initial Volume Final Volume

Run #1 100 ml 1.0 ml

Run #2

ABN TCLP Leachate

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units (Q
95-48-7	2-Methylphenol	ND	D023	200	0.10	0.0021	mg/l	
	3&4-Methylphenol	ND	D024	200	0.10	0.0047	mg/l	
87-86-5	Pentachlorophenol	ND	D037	100	0.10	0.0030	mg/l	
95-95-4	2,4,5-Trichlorophenol	ND	D041	400	0.10	0.0034	mg/l	
88-06-2	2,4,6-Trichlorophenol	ND	D042	2.0	0.10	0.0030	mg/l	
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.050	0.0023	mg/l	
121-14-2	2,4-Dinitrotoluene	ND	D030	0.13	0.10	0.015	mg/l	
118-74-1	Hexachlorobenzene	ND	D032	0.13	0.050	0.0077	mg/l	
87-68-3	Hexachlorobutadiene	ND	D033	0.50	0.050	0.0024	mg/l	
67-72-1	Hexachloroethane	ND	D034	3.0	0.050	0.0029	mg/l	
98-95-3	Nitrobenzene	ND	D036	2.0	0.050	0.0026	mg/l	
110-86-1	Pyridine	ND	D038	5.0	0.10	0.013	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Li	mits			
367-12-4	2-Fluorophenol	52%		10	-73%			
4165-62-2	Phenol-d5	38%		10	-58%			
118-79-6	2,4,6-Tribromophenol	95%		15	-125%			
4165-60-0	Nitrobenzene-d5	92%		23	-120%			
321-60-8	2-Fluorobiphenyl	64%		31	-102%			
1718-51-0	Terphenyl-d14	93%		42	-124%			

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

MCL = Maximum Contamination Level (40 CFR 261 6/96 E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \mbox{ Indicates analyte found in associated method blank } \\ N = \mbox{ Indicates presumptive evidence of a compound } \\$

Page 1 of 1

Client Sample ID: S-082715-GW-52

Lab Sample ID: MC41122-47 **Matrix:** SO - Soil

Method: SW846 8151 SW846 3510C

Project: Behr, Peoria, IL

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 YZ94969.D
 1
 09/11/15
 NK
 09/04/15
 OP44496
 GYZ7825

Run #1 Run #2

Initial Volume Final Volume

Run #1 100 ml 5.0 ml

Run #2

Herbicide TCLP Leachate

TCLP Leachate method SW846 1311

08/29/15

87.6

Date Sampled: 08/27/15

Date Received:

Percent Solids:

CAS No.	Compound	Result	HW# MCI	RL	MDL	Units Q
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	ND ND	D016 10 D017 1.0	0.010 0.010	0.0046 0.0013	mg/l mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Date Sampled: 08/27/15

08/29/15

87.6

Date Received:

Percent Solids:

Client Sample ID: S-082715-GW-52 **Lab Sample ID:** MC41122-47

Matrix: SO - Soil

Method: SW846 8081B SW846 3510C

Project: Behr, Peoria, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BE47935.D 1 09/12/15 NK 09/04/15 OP44497 GBE2406

Run #2

Initial Volume Final Volume

Run #1 100 ml 5.0 ml

Run #2

Pesticide TCLP Leachate TCLP Leachate TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW# MCI	, RL	MDL	Units	Q
58-89-9 12789-03-6 72-20-8 76-44-8 1024-57-3 72-43-5 8001-35-2	gamma-BHC (Lindane) Chlordane Endrin Heptachlor Heptachlor epoxide Methoxychlor Toxaphene	ND	D031 0.008	0.00050 0.0050 0.0050 0.00050 0.00050 0.00050 0.0025	0.00011 0.0011 0.00018 0.00014 0.000097 0.00017 0.0013	mg/l mg/l mg/l mg/l mg/l mg/l	
CAS No. 877-09-8 877-09-8 2051-24-3 2051-24-3	Surrogate Recoveries Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	Run# 1 65% 60% 91% 94%	Run# 2 I	0-150% 0-150% 0-150% 0-150%	0.0013	mg/1	

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

MCL = Maximum Contamination Level (40 CFR 261 6/96 E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

W

Page 1 of 1

Client Sample ID: S-082715-GW-52 Lab Sample ID: MC41122-47 Matrix: SO - Soil

Date Sampled: 08/27/15 **Date Received:** 08/29/15 **Percent Solids:** 87.6

Project: Behr, Peoria, IL

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	MDL	Units	DF	Prep	Analyzed By	Method
Arsenic	0.0017 U	D004	5.0	0.010	0.0017	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Barium	2.0	D005	100	0.50	0.0010	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Cadmium	0.11	D006	1.0	0.0040	0.00043	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Chromium	0.0033 B	D007	5.0	0.010	0.00048	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Lead	0.50	D008	5.0	0.010	0.0017	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Mercury	0.000096 U	D009	0.20	0.00020	0.00009	6mg/l	1	09/03/15	09/04/15 EC	SW846 7470A ²
Selenium	0.0020 U	D010	1.0	0.025	0.0020	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Silver	0.0010 U	D011	5.0	0.0050	0.0010	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹

(1) Instrument QC Batch: MA18427(2) Instrument QC Batch: MA18429(3) Prep QC Batch: MP25080(4) Prep QC Batch: MP25083

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

MCL = Maximum Contamination Level (40 CFR 261 6/96)

B = Indicates a result > = MDL but < RL

C

Page 1 of 1

Client Sample ID: S-082715-GW-52 Lab Sample ID: MC41122-47 Matrix: SO - Soil

Date Sampled: 08/27/15 **Date Received:** 08/29/15 **Percent Solids:** 87.6

Project: Behr, Peoria, IL

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Bulk Density (Dry Basis) ^a	1.3		g/ml	1	09/09/15	ANJ	ASTM D2937-94 M
Cyanide Reactivity	< 1.7	1.7	mg/kg	1	09/01/15 15:25	BF	SW846 CHAP7
Ignitability (Flashpoint)	> 230		Deg. F	1	09/02/15	BF	SW846 1020
Paint Filter Test	< 0.50	0.50	ml/100g	1	09/08/15 16:08	CF	SW846 9095
Phenols	< 2.8	2.8	mg/kg	1	09/08/15 14:15	BF	SW846 9065 M
Solids, Percent	87.6		%	1	09/02/15	HS	SM 2540G-97 MOD
Solids, Total	866000	90	mg/kg	1	09/10/15	BF	SM 2540B-11 MOD.
Sulfide Reactivity	< 57	57	mg/kg	1	09/01/15	BF	SW846 CHAP7
Total Organic Halides ^a	< 21	21	mg/kg	1	09/14/15	ANJ	SW846 9023
pH	8.3		su	1	09/08/15	CF	SW846 9045D

(a) Analysis performed at Accutest Laboratories, Dayton, NJ.

Report of Analysis

Client Sample ID: S-082715-GW-53 **Lab Sample ID:** MC41122-48

Matrix: SO - Soil

Method: SW846 8260C SW846 1311

Project: Behr, Peoria, IL

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 H74859.D
 100
 09/12/15
 KP
 09/01/15
 GP19518
 MSH2490

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCLP Leachate

TCLP Leachate method SW846 1311

08/29/15

89.5

Date Sampled: 08/27/15

Date Received:

Percent Solids:

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units Q
71-43-2	Benzene	ND	D018	0.50	0.10	0.027	mg/l
78-93-3	2-Butanone (MEK)	ND	D035	200	1.0	0.30	mg/l
56-23-5	Carbon tetrachloride	ND	D019	0.50	0.20	0.034	mg/l
108-90-7	Chlorobenzene	ND	D021	100	0.20	0.024	mg/l
67-66-3	Chloroform	ND	D022	6.0	0.20	0.040	mg/l
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.20	0.037	mg/l
107-06-2	1,2-Dichloroethane	ND	D028	0.50	0.20	0.030	mg/l
75-35-4	1,1-Dichloroethene	ND	D029	0.70	0.20	0.028	mg/l
127-18-4	Tetrachloroethene	ND	D039	0.70	0.20	0.021	mg/l
79-01-6	Trichloroethene	ND	D040	0.50	0.20	0.025	mg/l
75-01-4	Vinyl chloride	ND	D043	0.20	0.20	0.045	mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Li	mits		
1868-53-7	Dibromofluoromethane	128%		74	-135%		
2037-26-5	Toluene-D8	112%		83	-116%		
460-00-4	4-Bromofluorobenzene	100%		76	5-124%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082715-GW-53

Lab Sample ID: MC41122-48 **Matrix:** SO - Soil

Method: SW846 8270D SW846 3510C

Project: Behr, Peoria, IL

Date Sampled: 08/27/15
Date Received: 08/29/15
Percent Solids: 89.5

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X06957.D 1 09/08/15 MR 09/05/15 OP44507 MSX218

Run #2

Initial Volume Final Volume

Run #1 100 ml 1.0 ml

Run #2

ABN TCLP Leachate

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units Q
95-48-7	2-Methylphenol	ND	D023	200	0.10	0.0021	mg/l
	3&4-Methylphenol	ND	D024	200	0.10	0.0047	mg/l
87-86-5	Pentachlorophenol	ND	D037	100	0.10	0.0030	mg/l
95-95-4	2,4,5-Trichlorophenol	ND	D041	400	0.10	0.0034	mg/l
88-06-2	2,4,6-Trichlorophenol	ND	D042	2.0	0.10	0.0030	mg/l
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.050	0.0023	mg/l
121-14-2	2,4-Dinitrotoluene	ND	D030	0.13	0.10	0.015	mg/l
118-74-1	Hexachlorobenzene	ND	D032	0.13	0.050	0.0077	mg/l
87-68-3	Hexachlorobutadiene	ND	D033	0.50	0.050	0.0024	mg/l
67-72-1	Hexachloroethane	ND	D034	3.0	0.050	0.0029	mg/l
98-95-3	Nitrobenzene	ND	D036	2.0	0.050	0.0026	mg/l
110-86-1	Pyridine	ND	D038	5.0	0.10	0.013	mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Li	mits		
367-12-4	2-Fluorophenol	40%		10	-73%		
4165-62-2	Phenol-d5	31%		10	-58%		
118-79-6	2,4,6-Tribromophenol	88%		15	-125%		
4165-60-0	Nitrobenzene-d5	75%		23	-120%		
321-60-8	2-Fluorobiphenyl	63%		31	-102%		
1718-51-0	Terphenyl-d14	91%		42	-124%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

MCL = Maximum Contamination Level (40 CFR 261 6/96 E = Indicates value exceeds calibration range

J = Indicates an estimated value

Date Sampled: 08/27/15

08/29/15

89.5

Date Received:

Percent Solids:

Report of Analysis

Client Sample ID: S-082715-GW-53

Lab Sample ID: MC41122-48 **Matrix:** SO - Soil

Method: SW846 8151 SW846 3510C

Project: Behr, Peoria, IL

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 YZ94970.D
 1
 09/11/15
 NK
 09/04/15
 OP44496
 GYZ7825

Run #1 Run #2

Initial Volume Final Volume

Run #1 100 ml 5.0 ml

Run #2

Herbicide TCLP Leachate TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW# MCI	, RL	MDL	Units Q
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	ND ND	D016 10 D017 1.0	0.010 0.010	0.0046 0.0013	mg/l mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 I	imits		
CAS NO.	Surrogate Recoveries	Kuli# 1	Kull# 2 I	AIIIIUS		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Report of Analysis

Client Sample ID: S-082715-GW-53 Lab Sample ID: MC41122-48

Date Sampled: 08/27/15 Matrix: SO - Soil **Date Received: Percent Solids:**

Method: SW846 8081B SW846 3510C

Project: Behr, Peoria, IL

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 BE47936.D 1 09/12/15 NK 09/04/15 OP44497 GBE2406

Run #2

Final Volume Initial Volume

Run #1 5.0 ml 100 ml

Run #2

Pesticide TCLP Leachate

TCLP Leachate method SW846 1311

08/29/15

89.5

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units	Q
58-89-9 12789-03-6 72-20-8 76-44-8 1024-57-3 72-43-5 8001-35-2	gamma-BHC (Lindane) Chlordane Endrin Heptachlor Heptachlor epoxide Methoxychlor Toxaphene	ND ND ND ND ND ND ND ND ND	D013 D020 D012 D031 D031 D014 D015	0.0080	0.00050 0.0050 0.00050 0.00050 0.00050 0.00050 0.0025	0.00011 0.0011 0.00018 0.00014 0.000097 0.00017 0.0013	mg/l mg/l mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Li	mits			
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	63% 58% 87% 90%		30 30	1-150% 1-150% 1-150% 1-150%			

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082715-GW-53 Lab Sample ID: MC41122-48 Matrix: SO - Soil

Date Sampled: 08/27/15Date Received: 08/29/15Percent Solids: 89.5

Project: Behr, Peoria, IL

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	MDL	Units	DF	Prep	Analyzed By	Method
Arsenic	0.0017 U	D004	5.0	0.010	0.0017	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Barium	2.5	D005	100	0.50	0.0010	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Cadmium	0.13	D006	1.0	0.0040	0.00043	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Chromium	0.0022 B	D007	5.0	0.010	0.00048	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Lead	4.8	D008	5.0	0.010	0.0017	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Mercury	0.000096 U	D009	0.20	0.00020	0.00009	6mg/l	1	09/03/15	09/04/15 EC	SW846 7470A ²
Selenium	0.0020 U	D010	1.0	0.025	0.0020	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Silver	0.0010 U	D011	5.0	0.0050	0.0010	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹

(1) Instrument QC Batch: MA18427(2) Instrument QC Batch: MA18429(3) Prep QC Batch: MP25080(4) Prep QC Batch: MP25083

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

MCL = Maximum Contamination Level (40 CFR 261 6/96)

B = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: S-082715-GW-53 Lab Sample ID: MC41122-48 Matrix: SO - Soil

Date Sampled: 08/27/15 **Date Received:** 08/29/15 **Percent Solids:** 89.5

Project: Behr, Peoria, IL

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Bulk Density (Dry Basis) ^a	1.2		g/ml	1	09/09/15	ANJ	ASTM D2937-94 M
Cyanide Reactivity	< 1.7	1.7	mg/kg	1	09/01/15 15:25	BF	SW846 CHAP7
Ignitability (Flashpoint)	> 230		Deg. F	1	09/02/15	BF	SW846 1020
Paint Filter Test	< 0.50	0.50	ml/100g	1	09/08/15 16:08	CF	SW846 9095
Phenols	< 2.7	2.7	mg/kg	1	09/08/15 14:15	BF	SW846 9065 M
Solids, Percent	89.5		%	1	09/02/15	HS	SM 2540G-97 MOD
Solids, Total	892000	110	mg/kg	1	09/10/15	BF	SM 2540B-11 MOD.
Sulfide Reactivity	< 55	55	mg/kg	1	09/01/15	BF	SW846 CHAP7
Total Organic Halides ^a	37.7	23	mg/kg	1	09/14/15	ANJ	SW846 9023
pН	8.2		su	1	09/08/15	CF	SW846 9045D

(a) Analysis performed at Accutest Laboratories, Dayton, NJ.

Report of Analysis

Client Sample ID: S-082715-GW-54

Lab Sample ID: MC41122-49 **Matrix:** SO - Soil

Method: SW846 8260C SW846 1311

Project: Behr, Peoria, IL

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 H74860.D
 100
 09/12/15
 KP
 09/01/15
 GP19518
 MSH2490

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCLP Leachate

TCLP Leachate method SW846 1311

Date Sampled: 08/27/15

Date Received: 08/29/15

Percent Solids: 91.1

CAS No.	Compound	Result	HW#	MCL	RL	MDL	Units Q
71-43-2	Benzene	ND	D018	0.50	0.10	0.027	mg/l
78-93-3	2-Butanone (MEK)	ND	D035	200	1.0	0.30	mg/l
56-23-5	Carbon tetrachloride	ND	D019	0.50	0.20	0.034	mg/l
108-90-7	Chlorobenzene	ND	D021	100	0.20	0.024	mg/l
67-66-3	Chloroform	ND	D022	6.0	0.20	0.040	mg/l
106-46-7	1,4-Dichlorobenzene	ND	D027	7.5	0.20	0.037	mg/l
107-06-2	1,2-Dichloroethane	ND	D028	0.50	0.20	0.030	mg/l
75-35-4	1,1-Dichloroethene	ND	D029	0.70	0.20	0.028	mg/l
127-18-4	Tetrachloroethene	ND	D039	0.70	0.20	0.021	mg/l
79-01-6	Trichloroethene	ND	D040	0.50	0.20	0.025	mg/l
75-01-4	Vinyl chloride	ND	D043	0.20	0.20	0.045	mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Li	mits		
1868-53-7	Dibromofluoromethane	135%		74	-135%		
2037-26-5	Toluene-D8	107%		83	-116%		
460-00-4	4-Bromofluorobenzene	100%		76	5-124%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

W

Page 1 of 1

Date Sampled: 08/27/15

08/29/15

91.1

Date Received:

Percent Solids:

Client Sample ID: S-082715-GW-54

Lab Sample ID: MC41122-49 Matrix: SO - Soil

Method: SW846 8270D SW846 3510C

Project: Behr, Peoria, IL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 X06958.D 1 09/08/15 MR 09/05/15 OP44507 MSX218

Run #2

Initial Volume Final Volume

Run #1 100 ml 1.0 ml

Run #2

ABN TCLP Leachate TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW# MCI	. RL	MDL	Units Q
95-48-7	2-Methylphenol	ND	D023 200	0.10	0.0021	mg/l
	3&4-Methylphenol	ND	D024 200	0.10	0.0047	mg/l
87-86-5	Pentachlorophenol	ND	D037 100	0.10	0.0030	mg/l
95-95-4	2,4,5-Trichlorophenol	ND	D041 400	0.10	0.0034	mg/l
88-06-2	2,4,6-Trichlorophenol	ND	D042 2.0	0.10	0.0030	mg/l
106-46-7	1,4-Dichlorobenzene	ND	D027 7.5	0.050	0.0023	mg/l
121-14-2	2,4-Dinitrotoluene	ND	D030 0.13	0.10	0.015	mg/l
118-74-1	Hexachlorobenzene	ND	D032 0.13	0.050	0.0077	mg/l
87-68-3	Hexachlorobutadiene	ND	D033 0.50	0.050	0.0024	mg/l
67-72-1	Hexachloroethane	ND	D034 3.0	0.050	0.0029	mg/l
98-95-3	Nitrobenzene	ND	D036 2.0	0.050	0.0026	mg/l
110-86-1	Pyridine	ND	D038 5.0	0.10	0.013	mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
367-12-4	2-Fluorophenol	51%	1	0-73%		
4165-62-2	Phenol-d5	37%	1	0-58%		
118-79-6	2,4,6-Tribromophenol	93%	1	5-125%		
4165-60-0	Nitrobenzene-d5	90%	2	3-120%		
321-60-8	2-Fluorobiphenyl	74%	3	1-102%		
1718-51-0	Terphenyl-d14	93%	4	2-124%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

MCL = Maximum Contamination Level (40 CFR 261 6/96 E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

C

Page 1 of 1

Date Sampled: 08/27/15

08/29/15

91.1

Date Received:

Percent Solids:

Client Sample ID: S-082715-GW-54 Lab Sample ID:

MC41122-49 Matrix: SO - Soil

Method: SW846 8151 SW846 3510C

Project: Behr, Peoria, IL

DF **Prep Date Analytical Batch** File ID Analyzed By **Prep Batch** Run #1 YZ94971.D 09/11/15 NK 09/04/15 OP44496 GYZ7825

Run #2

Final Volume Initial Volume

Run #1 5.0 ml 100 ml

Run #2

Herbicide TCLP Leachate TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW# MCI	. RL	MDL	Units Q
94-75-7 93-72-1	2,4-D 2,4,5-TP (Silvex)	ND ND	D016 10 D017 1.0	0.010 0.010	0.0046 0.0013	mg/l mg/l
CAS No.	Cumpagata Dagawawiga	Run# 1	Run# 2 I	·•4		
CAS No.	Surrogate Recoveries	Kun# 1	Kun# 2 I	Limits		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: S-082715-GW-54

 Lab Sample ID:
 MC41122-49
 Date Sampled:
 08/27/15

 Matrix:
 SO - Soil
 Date Received:
 08/29/15

 Method:
 SW846 8081B
 SW846 3510C
 Percent Solids:
 91.1

Project: Behr, Peoria, IL

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 BE47937.D 1 09/12/15 NK 09/04/15 OP44497 GBE2406 Run #2

Run #1 100 ml 5.0 ml

Run #2

Pesticide TCLP Leachate

TCLP Leachate method SW846 1311

CAS No.	Compound	Result	HW# MCL RL	MDL	Units Q
58-89-9 12789-03-6 72-20-8 76-44-8 1024-57-3 72-43-5 8001-35-2	gamma-BHC (Lindane) Chlordane Endrin Heptachlor Heptachlor epoxide Methoxychlor Toxaphene	ND ND ND ND ND ND ND ND ND	D013 0.40 0.00050 D020 0.030 0.0050 D012 0.020 0.00050 D031 0.0080 0.00050 D031 0.0080 0.00050 D014 10 0.00050 D015 0.50 0.025	0.00011 0.0011 0.00018 0.00014 0.000097 0.00017 0.0013	mg/l mg/l mg/l mg/l mg/l mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2 Limits		
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	83% 77% 89% 93%	30-150% 30-150% 30-150% 30-150%		

ND = Not detected MDL = Method Detection Limit MCL = Maximum Contamination Level (40 CFR 261 6/96)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

W

Page 1 of 1

 Client Sample ID:
 S-082715-GW-54

 Lab Sample ID:
 MC41122-49

 Matrix:
 SO - Soil

Date Sampled: 08/27/15 **Date Received:** 08/29/15 **Percent Solids:** 91.1

Project: Behr, Peoria, IL

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	MDL	Units	DF	Prep	Analyzed By	Method
Arsenic	0.0017 U	D004	5.0	0.010	0.0017	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Barium	2.7	D005	100	0.50	0.0010	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Cadmium	0.14	D006	1.0	0.0040	0.00043	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Chromium	0.0029 B	D007	5.0	0.010	0.00048	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Lead	2.8	D008	5.0	0.010	0.0017	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Mercury	0.000096 U	D009	0.20	0.00020	0.00009	6mg/l	1	09/03/15	09/04/15 EC	SW846 7470A ²
Selenium	0.0020 U	D010	1.0	0.025	0.0020	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹
Silver	0.0010 U	D011	5.0	0.0050	0.0010	mg/l	1	09/03/15	09/03/15 EAL	SW846 6010C ¹

(1) Instrument QC Batch: MA18427(2) Instrument QC Batch: MA18429(3) Prep QC Batch: MP25080(4) Prep QC Batch: MP25083

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

MCL = Maximum Contamination Level (40 CFR 261 6/96)

B = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: S-082715-GW-54 Lab Sample ID: MC41122-49 Matrix: SO - Soil

Date Sampled: 08/27/15 **Date Received:** 08/29/15 **Percent Solids:** 91.1

Project: Behr, Peoria, IL

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Bulk Density (Dry Basis) ^a	1.3		g/ml	1	09/09/15	ANJ	ASTM D2937-94 M
Cyanide Reactivity	< 1.6	1.6	mg/kg	1	09/01/15 15:25	BF	SW846 CHAP7
Ignitability (Flashpoint)	> 230		Deg. F	1	09/02/15	BF	SW846 1020
Paint Filter Test	< 0.50	0.50	ml/100g	1	09/08/15 16:08	CF	SW846 9095
Phenols	< 2.7	2.7	mg/kg	1	09/08/15 14:15	BF	SW846 9065 M
Solids, Percent	91.1		%	1	09/02/15	HS	SM 2540G-97 MOD
Solids, Total	907000	82	mg/kg	1	09/10/15	BF	SM 2540B-11 MOD.
Sulfide Reactivity	< 54	54	mg/kg	1	09/01/15	BF	SW846 CHAP7
Total Organic Halides ^a	< 23	23	mg/kg	1	09/14/15	ANJ	SW846 9023
pН	8.1		su	1	09/08/15	CF	SW846 9045D

(a) Analysis performed at Accutest Laboratories, Dayton, NJ.

Page 1 of 1

Date Sampled: 08/27/15

Client Sample ID: S-082715-GW-46 Lab Sample ID: MC41122-50

Matrix: SO - Soil **Date Received:** 08/29/15 Percent Solids: 77.0

Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51484.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
Run #2	BK51518.D	10	09/15/15	NK	09/04/15	OP44491	GBK1610

	Initial Weight	Final Volume
Run #1	15.5 g	10.0 ml
Run #2	15.5 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 ^a	ND ND ND ND 1740 b	42 42 42 42 42	12 10 12 13 150	ug/kg ug/kg ug/kg ug/kg ug/kg	
11097-69-1 11096-82-5 CAS No.	Aroclor 1254 Aroclor 1260 ^a Surrogate Recoveries	2490 b 525 Run# 1	420 42 Run# 2	110 6.1 Lim	ug/kg ug/kg	
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	23% ° 24% ° 34% 34%	30% ^c 24% ^c 41% 48%	35-1 35-1 24-1 24-1	36% 71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to matrix interference. Confirmed by reanalysis.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

08/29/15

90.2

Client Sample ID: S-082715-GW-47 Lab Sample ID: MC41122-51

Date Sampled: 08/27/15 Matrix: SO - Soil **Date Received: Percent Solids:**

Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51485.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
Run #2	BK51519.D	50	09/15/15	NK	09/04/15	OP44491	GBK1610

	Initial Weight	Final Volume
Run #1	15.2 g	10.0 ml
Run #2	15.2 g	10.0 ml

PCB List

CAS No. Compound		Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5	Aroclor 1016 Aroclor 1221 Aroclor 1232	ND ND ND	36 36 36	10 9.1 11	ug/kg ug/kg ug/kg	
53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1242 Aroclor 1248 ^a Aroclor 1254 Aroclor 1260 ^a	ND 8720 ^b 11600 ^b 2570 ^b	36 1800 1800 1800	11 640 480 270	ug/kg ug/kg ug/kg ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi		
877-09-8 877-09-8	Tetrachloro-m-xylene Tetrachloro-m-xylene	94% 93%	0% c	35-13 35-13		
2051-24-3 2051-24-3	Decachlorobiphenyl Decachlorobiphenyl	138% 136%	0% c	24-17 24-17		

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Client Sample ID: S-082715-GW-48 Lab Sample ID: MC41122-52

Matrix: SO - Soil

Method: SW846 8082A SW846 3540C

Project: Behr, Peoria, IL **Date Sampled:** 08/27/15 **Date Received:** 08/29/15 **Percent Solids:** 90.4

		File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
]	Run #1	BK51487.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
]	Run #2	BK51520.D	100	09/15/15	NK	09/04/15	OP44491	GBK1610

Report of Analysis

	Initial Weight	Final Volume
Run #1	15.5 g	10.0 ml
Run #2	15.5 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 a Aroclor 1254 Aroclor 1260 a	ND ND ND ND 10900 b 28200 b 4150 b	36 36 36 36 3600 3600 3600	10 8.9 11 11 1300 930 520	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	
CAS No. 877-09-8	Surrogate Recoveries Tetrachloro-m-xylene	Run# 1 83%	Run# 2	Limi 35-13	ts	
877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	81% 122% 122%	0% c 0% c 0% c	35-13 24-17 24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082715-GW-49 Lab Sample ID: MC41122-53

 Matrix:
 SO - Soil

 Method:
 SW846 8082A
 SW846 3540C

Project: Behr, Peoria, IL

 Date Sampled:
 08/27/15

 Date Received:
 08/29/15

 Percent Solids:
 90.2

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	BK51488.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
Run #2	BK51521.D	20	09/15/15	NK	09/04/15	OP44491	GBK1610

	Initial Weight	Final Volume
Run #1	15.5 g	10.0 ml
Run #2	15.5 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	36	10	ug/kg	
11104-28-2	Aroclor 1221	ND	36	8.9	ug/kg	
11141-16-5	Aroclor 1232	ND	36	11	ug/kg	
53469-21-9	Aroclor 1242	ND	36	11	ug/kg	
12672-29-6	Aroclor 1248 a	4010 b	710	250	ug/kg	
11097-69-1	Aroclor 1254	6710 b	710	190	ug/kg	
11096-82-5	Aroclor 1260 ^a	1620 b	710	100	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	98%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	96%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	131%	0% c	24-17	71%	
2051-24-3	Decachlorobiphenyl	138%	0% c	24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: S-082715-GW-50 Lab Sample ID: MC41122-54

 Matrix:
 SO - Soil

 Method:
 SW846 8082A
 SW846 3540C

Project: Behr, Peoria, IL

 Date Sampled:
 08/27/15

 Date Received:
 08/29/15

 Percent Solids:
 92.1

		File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
]	Run #1	BK51489.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
]	Run #2	BK51523.D	50	09/15/15	NK	09/04/15	OP44491	GBK1610

	Initial Weight	Final Volume
Run #1	15.6 g	10.0 ml
Run #2	15.6 g	10.0 ml

PCB List

CAS No.	Compound	Result	RL	MDL	Units	Q
12674-11-2	Aroclor 1016	ND	35	9.8	ug/kg	
11104-28-2	Aroclor 1221	ND	35	8.7	ug/kg	
11141-16-5	Aroclor 1232	ND	35	10	ug/kg	
53469-21-9	Aroclor 1242	ND	35	11	ug/kg	
12672-29-6	Aroclor 1248 a	4970 b	1700	610	ug/kg	
11097-69-1	Aroclor 1254	9610 ^b	1700	450	ug/kg	
11096-82-5	Aroclor 1260 a	2240 b	1700	250	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
877-09-8	Tetrachloro-m-xylene	91%	0% c	35-13	36%	
877-09-8	Tetrachloro-m-xylene	94%	0% c	35-13	36%	
2051-24-3	Decachlorobiphenyl	110%	0% c	24-17	71%	
2051-24-3	Decachlorobiphenyl	130%	0% c	24-17	71%	

- (a) Estimated value due to the presence of other Aroclor pattern.
- (b) Result is from Run# 2
- (c) Outside control limits due to dilution.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

 $N = \ Indicates \ presumptive \ evidence \ of \ a \ compound$

Misc.	Forms
WIISC.	1.011112

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody

CON	S) 6	315 W. Br hicago, II	PVERS & ASSOCIATES yn Mawr Avenue linois 60631	SHIPF	PED TO eratory Nar			178 E)	<u> </u>	<u>'4118</u>	٦
٣		73)380-9: 73)380-64	933 phone 421 fax	REFE	RENCE N	JMBE	R:		PROJECT NAME:											
	CH/	AIN-OF-C	USTODY RECORD	i ww	PINEC				Erms Person Same S											
	LER'S TURE: _		PRINTED NAME:	11 (m. 14)	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			No. OF CONTAINERS	PARAMETERS							//				
EQ.	DATE	TIME	SAMPLE IDENTIFICATION		N No.		SAMPLE MATRIX		REMARK								REMARKS			
	8.4.5	n Pagan	5-38145- <u>00</u> 0	- 65	51.	Stage	See		K.											
		59,344		n A L					14,						4					
		2411		on the his					1%		L	<u></u>			4	4				
		2522		- 65-4					×.						4		4		7.6.	I Project
		5704	1 1	<u> </u>		4		<u> </u>	N.				-						ent Francisco	
_		2342		* (54.0				1	*.								+	-		XXX
4		3155	+	- 57				1								+				
		63.53.		-034										-+		+	-	+		
-+		10.55		* (*)	2000							<u>janor</u> Perok								
3		3232		- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1							T	\forall				
\exists		375		4.4					1/2							1				enter el cius y emilente que instituto polició de la companya de l
	T							X.												
7		tobit		4.154				N.	×											
	100	grand A	∀	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	X.									1		
		1	TOTAL NUMBER OF CONTAI					153												
LING	QUISHED	BY:	Belong and the	2 E	DATE: 8		REC (2)	EIVED	BY:	- within										ATE: IME:
	QUISHED	ву.			DATE:			EIVED	BY.										100	ATE:
<u>) </u>					IME:		3													ME: ATE:
)	UISHED	BY:			DATE: FIME:		REC 4	EIVED	BY∵										aeth	MES II
ETH	IOD OF	SHIPMEN	NT: 🏋 🛴					AIR B	ILL	No.								Î	8131113	1
hite ellov	, .	Receiving	Laboratory Copy	AMPLE	TEAM:				RECEIVED FOR LABORATORY BY:							nn.	5600			
ink	-	Shipper C Sampler	Copy -						ַם	ATE				TIN	1E:_					ner net net hat

MC41122: Chain of Custody Page 1 of 11

co (a)	≥ c	315 W. Br hicago, II	VERS & ASSOCIATES yn Mawr Avenue llinois 60631	SHIPPED TO (Laboratory Na		ager a	2-7 N									DC41133
\subseteq		73)380-9: 73)380-6	933 phone 421 fax	REFERENCE N	UMBE	R:		PRO	JJEC	T NA	ME:					
	CH	AIN-OF-C	USTODY RECORD	1.00000000				i V	N. way		ν.,	CL, AL	04/1/8946 10/1/2019	mgra d	4.30	\$
	PLER'S ATURE:		PRINTED NAME:	ng was			OF INERS	PAI	RAMI	TER	s/	//	//,	//	//	
EQ.	DATE	TIME	SAMPLE IDENTIFIC	ATION No.		MPLE TRIX	No. OF CONTAINERS		Ϊ,	//	//		//	//	//	REMARKS
1985	A. 14 C	CP01	5 · adver-us	t e tila	5			*								
and a		CASTA .		* 3 Tk				X								
6		33027		A. (10)									1.			STALLER
٨		11100		or a real							14		1	4		
ea.		Viva		-745										4	ļ	and the same
		344"3		The Name of Street, St				X		4	1-1		4.			
۱.,		1135		- 272	4	<u> </u>			4		1-1			1	\mathbb{H}	
		1844		1.3.3		<u> </u>		\rightarrow			1					
		100		* 154				Q- -			++			-		
		CSVL	4	* Lake							\vdash		- -			
		15.55		- 427		-		X		1000	+ +			-		
		V20VA		* 1.3				X		1-				1		
1		1314		- 2-4			7	V	\dashv					1		
5	¥	Vityland day	↓	er A. Phys.				74						†		
		7	OTAL NUMBER OF CONTAIN	VERS			7-5-5 mark									
LIN	QUISHED	BY.	Gen. Herryen	DATE: 8	28-75 7-04	REC (2)	CEIVED	BY:								DATE:
-	QUISHED	BY:		DATE: TIME:		REC	CEIVED	BY.								DATE:
-	UISHED	BY:		DATE: TIME:			CEIVED	BY:								DATE:
alle de la	IOD OF	SHIPMEN	VT: Test Victoria Circ	and the second			AIR B	ILL N	٥.							831/5 98
hite ellov nk			Laboratory Copy Copy	MPLE TEAM:				. -				LABO				- 005509

MC41122: Chain of Custody Page 2 of 11

	NI S	ES	86) CI	i15 W. iicago	Bryn Hllin			(Lab	PED TO oratory Na		sudden er e	All the St									r	WC41133
(773)380-993	<u> </u>	_						REFE	ERENCE N	UMBI	ER:		PF	OJE	CT N	AME						
CHAIN-OF-CU			CHA	IN-OF	-cus	TODY RECOR	lD D	1	**************************************					¥	64.	W.	36	Ma.	salah Histor Nelah	4.00	76	
	WPL NAT		R'S RE:				PRINTED NAME:	3	etist (No. OF CONTAINERS	PA	(RAM	ETE	RS/		//	//	//	//	REMARKS
E TIME		יום	ATE	TIME		SAMPLE	DENTIFIC	ATIO	N No.		MPLE ATRIX	No.		9/	//	//	//	\mathbb{Z}	<u> Z</u>	//		REMARKS
35 BACA 1		A 1					gen Sing	. "					94 <u>,</u>									
13552	Г	1		1551									W									
1903								* 5.7					<u> </u>									MANUSCO TO
1963.96				(see a see				Sec. Male			1		×	Ш	4						<u> </u>	
19472.3						1		C	<u> </u>				*4.			4					******	Total Service
1-275				1425				7 3.			1		wat.			4	1	Ш			4	** **
P475-2								1,800	V.				No.			4.				_		
something the St				Arthur Spirite	14 % S			. % 5					N.									
Conference &				Could been to								<u> </u>	×.			<u></u>					<u> </u>	
(Magazin)				43				in look	-		1		***				4					
13.55				7 300 mm				14 Sulf (4	1	×.		4	4			_		4	
				353		<u> </u>	- 4	***(**		4_	4		M.			4						
The second secon				and project to the project of the party of	Files	<u> </u>	one a Color		ACCOUNT OF THE PARTY OF THE PAR				1	-	4		+-					
(De-4)	L	4	AND DESCRIPTIONS					New York	GA,			<u> </u>	***				+		-			
basis	L		and the	a New Year			OF COUTA	NIPPO			×V.	, C.,	700							1		
10					10	TAL NUMBER	UF CUNTAI				1 2											DATE:
IED BY:	VQL	UIS	SHED	BY:		Holing on			DATE: 5	200	RE((2)	CEIVED	BY:									DATE:
ED BY:				- 4/4/ - /	made of profession		<u> </u>	1	DATE:			CEIVED	DV				70000000000000000000000000000000000000		10/12/17			DATE
IE∩ R.J.%	vul	UIS	SHED.	BY:					TIME:	<u>kan (1994)</u> Ingganis	(3)		ום									TIME:
ED BY	NO!	1119	SHED	BY					DATE:			DEIVED	BY:									DATE:
		· · · ·							TIME:		4											TIME:
OF SHIPMENT	HC	OE	OF	SHIPM	ENT		Care					AIR B	ILL	No.								112 0AE
-Shipper Co	te ow			Receiv Shippe	ing L r Co _l	aboratory Copy by		AMPLI	E TEAM:					RECE							Y:	0056 01
-Receiving	ow den	nro	d -	Receiv Shippe Sample	ing L r Cop er Co	aboratory Copy by		AMPLI	E IEAW:					RECE DATE:						RYB		0056(

MC41122: Chain of Custody Page 3 of 11

CO	5) CI	GA-RO	OVERS & ASSOCIATES Tryn Mawr Avenue Illinois 60631	SHIPPED TO (Laboratory Na	me):						A	rei	. 4	e ⁿ se	wy.	ujen)		MC41122
C	デン (7 (7	73)380-9 73)380-6	9933 phone 6421 fax	REFERENCE N	UMBER:		PF	ROJE	ЕСТ	NAI	ΛE:		B.	٠٨,	A.	j) _e	Brin.	Tilliami
	CH/	AIN-OF-C	CUSTODY RECORD	4007 196	•													
	PLER'S ATURE:	25	PRINTED NAME:		-	No. OF CONTAINERS	PA	RAI	MET	ERS		Χ,	1	Z	/	Z,	///	/
SEQ. No.	DATE	TIME	SAMPLE IDENTIFIC	ATION No.	SAMPL MATRI	CONTA	A.	Ż	Ŋ	ÿ.	/	Ţ	X X	y	1	Z Z		REMARKS
	CPC Tree and	o63 . 3.	C. 687718 - 64	201	2,4		40		V	V	V	1/2	V					
1		25G) 79 Tex					la e	W	V	N	V	1ª	¥	Ŵ	L		all common	W. L.
1-		20.2					1	W	М	w	W	V	\$ at	V		4	50,000	V 6-2-27 Section 1
/			J. J. V.	24		72	100	L.V		100	K	V	W.	U	1.)	4		- Contraction
	7							<u> </u>							-	-		7777
								<u> </u>										
								-							+-			
															-			
			All the section of th											-	H	+-		Santa de la companya
															-			
														100000	H			
															T	1		
			TOTAL NUMBER OF CONTA	INERS														
PELIN	OUISHED	RY∘		DATE: 8	# IR	ECEIVED	BY:											DATE:
(1)_	COIONED		July House	TIME:	7,7 (2)						والمناوس والمن						TIME:
	QUISHED	BY.		DATE:		ECEIVED	BY:											DATE:
<u> </u>				TIME:		3)								es a Conference company				TIME:
-	QUISHED	BY:		DATE:		ECEIVED	BY:										genes	DATE:
(3)				TIME:	1	4)								_				TIME:
MET	HOD OF	SHIPME	ENT:			AIR B	ILL	No.									8	31/15-97
White Yello		Fully Ex	tecuted Copy ng Laboratory Copy	AMPLE TEAM:			I	REC	EIVE	D F	OR	LAI	зог	?AT	OR	Y BY	:	
Pink		-Receivii -Shipper -Samplei	Copy				- E	ATE	:			Т	IME		***********		erre Specific	005909

MC41122: Chain of Custody Page 4 of 11

CO	NESTO	GA-R	OVERS & ASSO	CIATES	SHIPPED TO											
-	657	o Corpo	rate Drive s, Indiana 46278	1	(Laboratory Nam	ie):										mc41122
(a)			07 phone	_	Accordan	1000	EXZZ E									111641199
	(34	7)-328-26	of fax	e la	REFERENCE NU	MBER:		PRO.	JECT	NAM	E:					
	CHA	IN-OF-	CUSTODY RECORD		111031790						02.VA	: \\	-	~0.5	<u>></u>	
	PLER'S ATURE: -		752	PRINTED NAME:	rea westy		OF INERS	PARA		ERS	//	//	//		//	
SEQ.	DATE	TIME	SAMPLE ID	ENTIFICA	TION No.	SAMP		İ	3 3 /	//		//	//		//	REMARKS
46	J.FS.80	8752	5 - 082774	5-600	-46	Som		*								
474	١	5756	1	1	- 4-1		\	4							1	of the state of th
48		07759			-48			*								Carcinal
49		150			-49		1	4							<u> </u>	
50	- /	6080	1	~L	-50	1	\	4	1							TAT
									}				7			
														1		
							7									
			/													286.4456 <u>-</u>
			400													
											1	П	- -		en y many en y en version	
_			TOTAL NUMBER C	F CONTAIN	IERS		5							3		
RELIN	QUISHED	BY:	01 11		DATE: 8-2		RECEIVED									DATE
①_			- JAN 1000 / TRANS	CARRE	TIME: /O	manager of the land of the land	②								provide contraction (TIME
	QUISHED	ву: 🖊	· eff		DATE:		RECEIVED									DATE
<u> </u>					TIME:		<u> </u>			-		- Property	-			DATE
	QUISHED	BY:			DATE:		RECEIVED	BY								TIME
<u> </u>				designation of the second second	1 IIVIE		<u> </u>				e de mandre de la composition della composition					
MET	HOD OF	SHIPMI	ENT: FEDEL S	PRINTER	O255001645		TRAC	KING	No.							8/3/15 75
Whit	e	-Fully Ex	recuted Copy		MPLE TEAM:			RE	CEIVE	D FO	RLA	BOR	ATO	RY BY	:	2483
Yello	w w	-Receivi	ng Laboratory Copy		Creamany			_		أخيث					_	2400
Pink		-Shipper -Sample		_	Tion Have	٠. ~		DAT	Œ:			IME:				

MC41122: Chain of Custody Page 5 of 11

ي ر	HD.	ine.	. 19022me	nust, Their	20.7											
COA	86	345-W:-I	OVERS & . Bryn Mawr Av Illinois 6063		(Laborat	ory Name								1000	(1110	0
1			9933 phone	1	Accus	TEST	LAB	OF STO	S' E	2				mc	7110	<u>^</u>
			6421 fax		REFERE	NCE NU	IBER	:		PROJE	CT NA	ME:				
	CH	AIN-OF-	CUSTODY R	ECORD	11103	PFIC				BE	455 -	PEON	٠۵.	<u> </u>	2,2	
	PLER'S ATURE: _		July 1	PRINTED NAME:	Crank	- put		<u>u</u>	CONTAINERS	PARAM	/	s//				DEMARKS
SEQ. No.	DATE	TIME	SAMP	LE IDENTIFI	CATION I	No.	SAM MAT		CONT	200						REMARKS
1	3.2.30	PIEO	5-08	2615 - CM	10-6	p {	500		a	X						
2	١	2904	1	l ,	- 05.	-よ	1	1		X						
3		3911			- 03	-3			1	X						
i\		0977		1	· 04					×					13	でもなり
5		orre			= o5	-5				<						
6		0940			-06	-6			•	×					***************************************	TAT
4		0958			FO-	-7				×						* . */
8		1002			-08	-8			١.	Κ						
9		BOOK			-09	-9				~						
10		Evol	1		-10	-10				X						
		1020			-11	- (1	×						
12		WIB			-17_	-12				×						
13		F7501			<u>13</u>	-13			١.	X			1			
14		1032			-14	-14			`	×			4-4-		_	
15	<u> </u>	R-SDI	· ·	\	-,5	-15	<u> </u>			$\leq \perp \perp$						13D
			TOTAL NUN	BER OF CONT					5							
RELING	QUISHED	BY:	In Hay	Wr_	DA ⁻	TE: 8-20 IE: 1000	8-15)	RECEI	VED E	3Y:	F	-p) p				DATE: TIME:
RELING	QUISHED	ву	FE	na	DA ⁻	TE:	***	RECEI	VED E	BY:	No	17	<i></i>			DATE: 8/29/15
	QUISHED	BY:			DA	TE:		RECEI	VED E	3Y:						DATE:
3_					TIM	E:		4_								TIME:
	OD OF	SHIPM	ENT: FEOT	Ez P2.0277	y OUZOR	ے،نہر		All	R BII	L No.	4	1	2		0.	8,1.30
White			xecuted Copy		SAMPLE TE					RECE	IVED F	OR/LA	BORA	TORY B	Y:	2.0h v av av
Yellov			ng Laboratory		Creek	Indan				de	nTin	W	1		_ CH	60966 0
Pink		Shippe							/,	DATE	4/20	183	CIME.	10:42		~ ~ ~ ~ ~ ~ ~
Golde	nrod ·	-Sample	r Copy		- Selva	Hayan	5			DAIL	3/0-1	<u> 10 y</u>	HVIL.	1		

1001-00(SOURCE)GN-CO004

MC41122: Chain of Custody Page 6 of 11

G.	,, GF	۸۵	∇	osemo	700	7	LINE	20																				
CON				ERS &			ATE		PED TO																			
4				Mawr A		re-		(Labo	oratory Na	ame	e):										_		. ,	ili	1	a		
(ols 6063 phone				4	دسات	\bot	AD.	PATO	スペモン	_							\mathcal{L}	nc		<u> 111</u>	2.	≺		
1		73)380-						REFE	RENCE N	١U٨	/IBEF	₹:		P	RO.	JEC.	١NA	ME:										
	CHA	IN-OF-	cus	TODY F	RECC	RD		T	10317	١					B	تسلاد		$\mathcal{D}^{\mathcal{Z}_{\ell}}$	555.1	ς,	Z	سرم	رمور	5_				
	LER'S	14		no		PRI	NTED	_	\ . \				No. OF CONTAINERS	P			TER		7	7	7	7	7	7	7	$\overline{/}$		
SIGNA	TURE:		T	\sim		N	AME: _	رورمي	Mesu	\leftarrow			片			/	/ /	/ /	//	/ /	/ /	//	//					_
SEQ.			K)				CATIO	N M -		SAN	IPLE	SE		Ó,	Ø.	/,	Ι,	Ι,	Ι,	/,	/ ,	/ ,	/ /		REN	/ARK	S
No.	DATE	TIME		SAIVII	PLE	IDE	NIIFI	CATIO	N NO.		MA	TRIX	8		4	\angle	\angle	\angle	\angle	\angle	\angle	\angle	\angle	_				
160	8.26.5	1043	V	S - C	82	615	· - 6v	N - 14		6	Sa	<u></u>	`	X														
14		1059						- 1					1	X	4		_			ļ	ļ	ļ						
18		1107				ļ	\rightarrow	- 15			\sqcup		1	X	_	-	-		_	_	ļ	1		<	5	two.	10.77°	
19		1110						- \c	1 -1		\sqcup		\	X	_	-	-		_	-	-	-			*****		2 4000	
20		1113				<u> </u>		- 20					<u>'</u>	X	_	+-	┼	ļ		-	-	-			******	TAT		
21		1112				 		- 2	./				<u> </u>	X	4	+	+-		_	-	-	-					-	
22		1135				-		- 2		<u>约</u>			<u>\</u>	X	-	+	-	-		-	-							
23	-	1145 1259				ļ	\dashv	- 7		77 74			,	X	+	+	\vdash	-	-	-	-							
24 25	-	1304					-+	- Z'		75			1	Ž	+	+-	1	-		-	<u> </u>	1						
	_	1312						- 20		26			1	t		+	\vdash											
26		1315					-	-2					<u>, </u>	K	+	\dagger												
28		1319	$\neg \uparrow$					-7.5		28			1	Ń		T	1											
79		1324		***************************************				-29	_	29			i	X														
30	1	1343	7	,	7	1	$\neg \downarrow$	-3	0 -3	60	7		١	×														
			TOT	TAL NU	MBE	R OF	CONT	AINERS					15															
	UISHED	BY: /	7.1	/	1/-				DATE: 🌋				EIVED	BY	' :		L	8	, ,	-						DATE		
10_			p la	<u>m A</u>	tar	fly				00	0	2								4						. TIME:		
	UISHED	BY: 🥙	-	tes	1 4			_	DATE: TIME:			REC	CEIVED	BY	:		M	1200										1/18
2_			/						DATE:				EIVED						_							DATE		۲. ۲
3	UISHED	BY:						L	TIME:			(4)	EIVEL	BY	:											TIME:		
							77100																					
METH	OD OF	SHIPM	ENT:	FROT	<u> </u>	72m2	77 0	محتوي رز	740				AIR B	ILL	. No	•	_		1		2							
White				ed Copy			7:	SAMPLE	TEAM:					Т							RAT	ORY	BY		Line	AGO S	C	
Yellow	, -	Receivi	ing La	aborator		ру		_Gba	h beten					_	<u>D</u>	LA	m	11	w	4				-				4
Pink Golde		Shipper Sample						7	no Hai		_			1	DAT	E: 8	1/2	¥/	T	IME	:/	0.9	5	>*	L	05!	コブブ	
L		CE)GN-C		<i>-</i> y						3				-1		-7	/	7										

MC41122: Chain of Custody Page 7 of 11

. 5 (å)

(J.)	·\.	/C - /	COSEMO	2c, Z	تدرماهرك											Ì	$\gamma \gamma \zeta$	- 41	11	
co	\mathcal{D}	8615 W. Chicago	Bryn Ma , Illinois	wr Ave 60631	SSOCIATI nue	(La	IIPPED aborator	ry Nam	•	272C		>								
0			-9933 pt				FEREN					T	JEC.	NAI	ΛE:					
-		·	-CUSTO		2000		11031											-~-		
-		TAIN-OF	-605101	JY REC			1105				(0		SAME			\\ \\ \	, ~	-1173		
	IPLER'S ATURE:	$\stackrel{\bigcirc}{\leftarrow}$	M19	$\overline{}$	PRINTED NAME:	_C50c	JUE	, Ly			OF INER	FAF	CAIVIE	/ /			//	//,	///	
SEQ. No.	DATE	TIME	S	AMPL	E IDENTIF	ICAT	ION No	o.		VIPLE TRIX	No. OF CONTAINERS	7	<i>6</i> 9/				<u> </u>			REMARKS
31	0826	51349	S-	08-	2615 - G	۔ - د	ڪ/	-31	S		1	×								
32		1352				- 7	52	-32			_\	\prec								
33		8041					53	-:33			١	×							7	CSHOWA
34		1414				~ 3		-34			__	X								
35		1751				~ 3	55	- 35			__	X					1		1	74
36		1452				- 3	ماذ	-36			__	X								
3.1		1432				- 5	FZ	-37				×								
38		4138	1435			-3	58	-38	<u> </u>		1	X								
39		1441				<u> → 7</u>	59	-39				X								
40		1448					10	-40			_\	\times								
41		1508					41	-41				$\times \mid$								
42	\rightarrow	1511	4		V ~		15	-42	ļ			メー				_				
	15.80	05FO	S-	085	715 - 61			-43			1	X				_		_		
44		0.344					44	-44		1_1		之		11				_		
45	+	0748	1	1		T	45	-45			1	*								
			TOTAL	NUMB	ER OF CON	TAINER					15									
	QUISHEI	DBY:	7./	Hay			DATE				EIVED	BY:				1	7 6	- 22		DATE:
1			april 1	- //			_ TIME:	/ 0 -	2)	2							7			_ TIME:
	QUISHE	D BY:		E	(T) (T		DATE TIME:			REC 3	EIVED	BY:		14	N	/				DATE: 8/21/1
2_	011101150						DATE													_ TIME: / O: ~
3_	QUISHED	DBY:					TIME:			(4)	EIVED	BY:								_ TIME:
MET	HOD OI	FSHIPM	ENT: 🗲	5F1 ,	PRIDDITY C	מפבנק	المصاملة			,	AIR BI			1	_//	7		~~~~		
White Yellov Pink	e N	-Fully E: -Receivi -Shippe	xecuted 0 ing Labor r Copy	Сору		SAMP	LE TEA					144	CEIV LAA TE: {{	1/10	<u>~~</u>	-)	:/o·		: CHIC	100 SC 105 6 0 1
4004	00/00/15	OCEVON C	2004										7	7						***************************************

MC41122: Chain of Custody Page 8 of 11

GHD Rosemont															n	\sim	411	12:	2		
CONESTOGA-ROVERS & ASSOC 8615 W. Bryn Mawr Avenue Chicago, Illinois 60631 (773)380-9933 phone		SHIPPED (Laborato		e):						,	Ac	CL	+	es"	7	•					
(773)380-9933 phone (773)380-6421 fax	Γ	REFEREN	CE NUI	VIBER	::		PR	OJE	CT I	MAP	E:	4	Be	hr	١ -	Pe	oria	T	lino	\$	
CHAIN-OF-CUSTODY RECORD		11103	179									4	. \0					•			
	NTED AME:	rice Wi	منسر	-		No. OF CONTAINERS	PAI	RAM	ETE	RSX				3/4	State of the state	<u> </u>	/ 5 73	/	DEM	ARKS	
SEQ. DATE TIME SAMPLE IDEI	NTIFICA	ATION N		SAM MAT		CONT	18 4 4 5 4 5 4 5 4 5 4 5 6 5 6 5 6 5 6 5 6)) }	Series Con		Siril	O SA					INE IVI	ANNO	
51 8-27-15 0914 5-082715-	GW-	-51	-46	Soi		7	-	V	V	V	V	V	V	V	7						
52 09773		52	-47	1		2	-	V	V	V,	4	V	V	V			_		T so	NO.	
55 0937	1	53	-48 -44	++	-	2	レレ	V	V	-		V	./	V							
54 1 0944	•	57	4.1	1 4			-	-	V			8	V	ν	-3			1	77	<u> </u>	
							\dashv		\dashv		+	+	T								
							\Box					\top	1								
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						_		_			$\perp$	_								
			~_~				_		-	_	_	+	-								
					-		-	-	-	-	-	+	+			-					
							-	-		-	+	+	+			-					
			<del></del>		-			+	+	$\dashv$	+	$\dashv$	+	-		_					
					$\neg$			+	$\top$		$\top$	$\top$		$\neg$			***************************************				
TOTAL NUMBER OF	CONTAIN	IERS																			
RELINQUISHED BY: July Hangu	`	DATE TIME	: 4-2		REC 2	EIVED	BY:			/	50	-8)	) 4	<u>į</u> ,	z				DATE: TIME:		
RELINQUISHED BY: For S	(F	DATE TIME			REC	EIVED	BY:	_/	N		/	7							DATE:	100	715
RELINQUISHED BY:		DATE	:		REC	EIVED	BY:												DATE:		
3		TIME	:		4													[	TIME:		
METHOD OF SHIPMENT:					ļ	AIR BI	LL N	lo.	1		//	2									
White -Fully Executed Copy Yellow -Receiving Laboratory Copy	SA	MPLE TEA	M:							D FÓ				ATC	RY	BY:	3410	AGO	sc		
Pink -Shipper Copy Goldenrod -Sampler Copy						~	1700	ATE:			7	April 100	77	10	7. 7	5		U	)59	09	

1001-00(SOURCE)GN-CO004

MC41122: Chain of Custody **Page 9 of 11** 





### **Accutest Laboratories Sample Receipt Summary**

CCUTEST LABORATORIES

Date / Time Received: 8/29/2015 10:00:00 AM   Delivery Method:	Accutest Job Number: MC4	1122	Client: CRA			Immediate Client Se	rvices Actio	n Require	d: No
Cooler Security Y or N 3. COC Present:	Date / Time Received: 8/29	/2015 10:00	0:00 AM Deliv	ery Metho	d:				
1. Custody Seals Present:	Project: BEHR PEORIA		No. 0	Coolers:	2	Airbill #'s:			
2. Custody Seals Intact:						Sample Integrity - Documentation	<u>Y</u>	or N	
Cooler Temperature  1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. Composition of sample: 4. VOCs headspace free: 5. Filtering instructions clear:		_				· · ·		_	
1. Temp criteria achieved:	·	Y or	N			• •			
3. Cooler media:   Ice (Bag)   2. All containers accounted for:	Temp criteria achieved:	<b>✓</b>				Sample Integrity - Condition	<u>Y</u>	or N	
Quality Control Preservation Y N N/A  1. Trip Blank present / cooler: Sample Integrity - Instructions Y N N/A  2. Trip Blank listed on COC: 1. Analysis requested is clear: V 1. Analysis requested is clear: V 1. Analysis requested for unspecified tests  4. VOCs headspace free: V 2. Bottles received for unspecified tests  4. Compositing instructions clear: V 1. Compositing instructions clear: V 1. Trip Blank listed on the coc. Sol ID on bottle is "S082715-GW-46 Sol ID on bottle is "S082715-GW-47 Sol ID on bottle is "S082715-GW-48 Sol ID on bottle is "S082715-GW-49 Sol ID	· -					· ·		_	
1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: 3. Sufficient volume rec'd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	<del>-</del>						✓	_	
2. Trip Blank listed on COC:  3. Samples preserved properly:  4. VOCs headspace free:  4. VOCs headspace free:  5. Filtering instructions clear:  6. Filtering instructions clear:  7. Filtering instructions clear:  8. Filtering instructions clear:  9. Comments  1. Analysis requested is clear:  9. Compositing tests  9. Compositing instructions clear:  9.	<u>-</u>					Sample Integrity - Instructions	Υ	N	N/A
3. Samples preserved properly:  4. VOCs headspace free:  3. Sufficient volume rec'd for analysis:  4. Compositing instructions clear:  5. Filtering instructions clear:  5. Filtering instructions clear:  5. Filtering instructions clear:  7. Filtering instructions clear:  8. Filtering instructions clear:  9. Filt	2. Trip Blank listed on COC:					Analysis requested is clear:			
4. Compositing instructions clear:  Comments  5. Filtering instructions clear:  -we received five 4-oz jars not listed on the coc50 ID on bottle is "5082715-GW-46 -51 ID on bottle is "5082715-GW-47 -52 ID on bottle is "5082715-GW-48 -53 ID on bottle is "5082715-GW-48 -53 ID on bottle is "5082715-GW-49	3. Samples preserved properly:	<b>~</b>				2. Bottles received for unspecified tests			
Comments  5. Filtering instructions clear:  -we received five 4-oz jars not listed on the coc50 ID on bottle is "5082715-GW-46 -51 ID on bottle is "5082715-GW-47 -52 ID on bottle is "5082715-GW-48 -53 ID on bottle is "5082715-GW-48	4. VOCs headspace free:					3. Sufficient volume rec'd for analysis:	<b>~</b>		
-we received five 4-oz jars not listed on the coc50 ID on bottle is "5082715-GW-46 -51 ID on bottle is "5082715-GW-47 -52 ID on bottle is "5082715-GW-48 -53 ID on bottle is "5082715-GW-48						4. Compositing instructions clear:			<b>✓</b>
-50 ID on bottle is "S082715-GW-46 -51 ID on bottle is "S082715-GW-47 -52 ID on bottle is "S082715-GW-48 -53 ID on bottle is "S082715-GW-49	Comments					5. Filtering instructions clear:			<b>✓</b>
	-50 ID on bottle is "S082715-GW-46 -51 ID on bottle is "S082715-GW-47 -52 ID on bottle is "S082715-GW-48 -53 ID on bottle is "S082715-GW-49	on the coc.							

Accutest Laboratories V:508.481.6200 495 Technology Center West, Bldg One F: 508.481.7753 Marlborough, MA www/accutest.com

> MC41122: Chain of Custody Page 10 of 11





### Sample Receipt Summary - Problem Resolution

Accutest Job Number: MC41122

CSR: Jeremy Vienneau Response Date: 8/31/2015

Response: The client confirmed that a COC was left out of the cooler. See email in file.

_____

 Accutest Laboratories
 495 Technology Center West, Bldg One
 Mariborough, MA

 V:508.481.6200
 F: 508.481.7753
 www/accutest.com

MC41122: Chain of Custody Page 11 of 11





# GC/MS Volatiles

# QC Data Summaries

# Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries



**Method:** SW846 8260C

# **Method Blank Summary Job Number:** MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSH2490-MB	H74852.D	1	09/12/15	KP	n/a	n/a	MSH2490

#### The QC reported here applies to the following samples:

MC41122-46, MC41122-47, MC41122-48, MC41122-49

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	0.50	0.27	ug/l
78-93-3	2-Butanone (MEK)	ND	10	3.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	0.34	ug/l
108-90-7	Chlorobenzene	ND	1.0	0.24	ug/l
67-66-3	Chloroform	ND	1.0	0.40	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.37	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	0.31	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	0.28	ug/l
127-18-4	Tetrachloroethene	ND	1.0	0.21	ug/l
79-01-6	Trichloroethene	ND	1.0	0.25	ug/l
75-01-4	Vinyl chloride	ND	1.0	0.45	ug/l

#### CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	117%	74-135%
2037-26-5	Toluene-D8	99%	83-116%
460-00-4	4-Bromofluorobenzene	109%	76-124%



**Method:** SW846 8260C

# **Leachate Blank Summary Job Number:** MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample GP19518-LB1	<b>File ID</b> H74853.D	<b>DF</b> 10	<b>Analyzed</b> 09/12/15	<b>By</b> KP	<b>Prep Date</b> 09/01/15	<b>Prep Batch</b> GP19518	Analytical Batch MSH2490

#### The QC reported here applies to the following samples:

MC41122-46, MC41122-47, MC41122-48, MC41122-49

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2	Benzene	ND	5.0	2.7	ug/l
78-93-3	2-Butanone (MEK)	ND	100	30	ug/l
56-23-5	Carbon tetrachloride	ND	10	3.4	ug/l
108-90-7	Chlorobenzene	ND	10	2.4	ug/l
67-66-3	Chloroform	ND	10	4.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	10	3.7	ug/l
107-06-2	1,2-Dichloroethane	ND	10	3.1	ug/l
75-35-4	1,1-Dichloroethene	ND	10	2.8	ug/l
127-18-4	Tetrachloroethene	ND	10	2.1	ug/l
79-01-6	Trichloroethene	ND	10	2.5	ug/l
75-01-4	Vinyl chloride	ND	10	4.5	ug/l

#### CAS No. **Surrogate Recoveries** Limits

1868-53-7	Dibromofluoromethane	126%	74-135%
2037-26-5	Toluene-D8	115%	83-116%
460-00-4	4-Bromofluorobenzene	108%	76-124%



**Method:** SW846 8260C

# Blank Spike/Blank Spike Duplicate Summary

Job Number: MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
MSH2490-BS	H74849.D	1	09/12/15	KP	n/a	n/a	MSH2490
MSH2490-BSD	H74850.D	1	09/12/15	KP	n/a	n/a	MSH2490

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	50	50.2	100	50.5	101	1	71-125/25
78-93-3	2-Butanone (MEK)	50	62.2	124	62.2	124	0	22-193/25
56-23-5	Carbon tetrachloride	50	66.4	133	65.5	131	1	44-168/25
108-90-7	Chlorobenzene	50	41.8	84	42.4	85	1	71-119/25
67-66-3	Chloroform	50	59.0	118	57.1	114	3	64-133/25
106-46-7	1,4-Dichlorobenzene	50	46.0	92	47.4	95	3	71-117/25
107-06-2	1,2-Dichloroethane	50	61.3	123	61.0	122	0	48-151/25
75-35-4	1,1-Dichloroethene	50	51.4	103	51.7	103	1	49-151/25
127-18-4	Tetrachloroethene	50	43.8	88	45.5	91	4	69-125/25
79-01-6	Trichloroethene	50	57.0	114	57.2	114	0	72-121/25
75-01-4	Vinyl chloride	50	58.4	117	55.1	110	6	49-159/25

CAS No.	<b>Surrogate Recoveries</b>	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	109%	104%	74-135%
2037-26-5	Toluene-D8	108%	106%	83-116%
460-00-4	4-Bromofluorobenzene	105%	107%	76-124%



^{* =} Outside of Control Limits.

**Method:** SW846 8260C

# **Leachate Spike Summary Job Number:** MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
GP19518-LS1	H74870.D	100	09/12/15	KP	09/01/15	GP19518	MSH2490
MC41122-46	H74857.D	100	09/12/15	KP	09/01/15	GP19518	MSH2490

The QC reported here applies to the following samples:

CAS No.	Compound	MC4112 ug/l	2-46 Spike Q ug/l	LS ug/l	LS %	Limits
71-43-2	Benzene	ND	5000	4850	97	63-125
78-93-3	2-Butanone (MEK)	ND	5000	5480	110	10-158
56-23-5	Carbon tetrachloride	ND	5000	6380	128	48-153
108-90-7	Chlorobenzene	ND	5000	3800	76	68-117
67-66-3	Chloroform	ND	5000	5670	113	57-137
106-46-7	1,4-Dichlorobenzene	ND	5000	4250	85	66-114
107-06-2	1,2-Dichloroethane	ND	5000	5990	120	48-146
75-35-4	1,1-Dichloroethene	ND	5000	5100	102	47-150
127-18-4	Tetrachloroethene	ND	5000	3840	77	71-117
79-01-6	Trichloroethene	ND	5000	5080	102	67-121
75-01-4	Vinyl chloride	ND	5000	5790	116	49-151

CAS No.	Surrogate Recoveries	LS	MC41122-46 Limits		
	Dibromofluoromethane	112%	127%	74-135%	
2037-26-5	Toluene-D8	110%	113%	83-116%	
460-00-4	4-Bromofluorobenzene	106%	104%	76-124%	



^{* =} Outside of Control Limits.

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

Project: Behr, Peoria, IL

Method: SW846 8260C Matrix: LEACHATE

### Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	S1	<b>S2</b>	S3
MC41122-46	H74857.D	127	113	104
MC41122-47	H74858.D	127	112	104
MC41122-48	H74859.D	128	112	100
MC41122-49	H74860.D	135	107	100
GP19518-LB1	H74853.D	126	115	108
GP19518-LS1	H74870.D	112	110	106
MSH2490-BS	H74849.D	109	108	105
MSH2490-BSD	H74850.D	104	106	107
MSH2490-MB	H74852.D	117	99	109

Surrogate Recovery Compounds Limits

 S1 = Dibromofluoromethane
 74-135%

 S2 = Toluene-D8
 83-116%

 S3 = 4-Bromofluorobenzene
 76-124%





# GC/MS Semi-volatiles

QC Data Summaries

# Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries



**Method:** SW846 8270D

# **Method Blank Summary Job Number:** MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44507-MB	<b>File ID</b> X06950.D	<b>DF</b> 1	<b>Analyzed</b> 09/08/15	<b>By</b> MR	<b>Prep Date</b> 09/05/15	Prep Batch OP44507	Analytical Batch MSX218

#### The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
05 40 7	2 Madhadahara1	ND	100	2.1	/1
95-48-7	2-Methylphenol	ND	100	2.1	ug/l
	3&4-Methylphenol	ND	100	4.7	ug/l
87-86-5	Pentachlorophenol	ND	100	3.0	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	100	3.4	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	100	3.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	50	2.3	ug/l
121-14-2	2,4-Dinitrotoluene	ND	100	15	ug/l
118-74-1	Hexachlorobenzene	ND	50	7.7	ug/l
87-68-3	Hexachlorobutadiene	ND	50	2.4	ug/l
67-72-1	Hexachloroethane	ND	50	2.9	ug/l
98-95-3	Nitrobenzene	ND	50	2.6	ug/l
110-86-1	Pyridine	ND	100	13	ug/l

CAS No.	Surrogate Recoveries		Limits
367-12-4	2-Fluorophenol	47%	10-73%
4165-62-2	Phenol-d5	35%	10-58%
118-79-6	2,4,6-Tribromophenol	99%	15-125%
4165-60-0	Nitrobenzene-d5	90%	23-120%
321-60-8	2-Fluorobiphenyl	74%	31-102%
1718-51-0	Terphenyl-d14	94%	42-124%



**Method:** SW846 8270D

# Blank Spike Summary Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44507-BS	<b>File ID</b> X06951.D	<b>DF</b> 1	<b>Analyzed</b> 09/08/15	By MR	<b>Prep Date</b> 09/05/15	Prep Batch OP44507	Analytical Batch MSX218

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
95-48-7	2-Methylphenol	500	410	82	20-112
	3&4-Methylphenol	1000	724	72	19-102
87-86-5	Pentachlorophenol	500	507	101	28-117
95-95-4	2,4,5-Trichlorophenol	500	534	107	56-112
88-06-2	2,4,6-Trichlorophenol	500	514	103	54-112
106-46-7	1,4-Dichlorobenzene	500	292	58	30-90
121-14-2	2,4-Dinitrotoluene	500	527	105	62-121
118-74-1	Hexachlorobenzene	500	479	96	49-128
87-68-3	Hexachlorobutadiene	500	355	71	22-96
67-72-1	Hexachloroethane	500	294	59	22-86
98-95-3	Nitrobenzene	500	469	94	50-117
110-86-1	Pyridine	500	179	36	10-86

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits	
367-12-4	2-Fluorophenol	49%	10-73%	
4165-62-2	Phenol-d5	36%	10-58%	
118-79-6	2,4,6-Tribromophenol	100%	15-125%	
4165-60-0	Nitrobenzene-d5	99%	23-120%	
321-60-8	2-Fluorobiphenyl	79%	31-102%	
1718-51-0	Terphenyl-d14	92%	42-124%	



^{* =} Outside of Control Limits.

**Method:** SW846 8270D

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP44507-MS	X06952.D	1	09/08/15	MR	09/05/15	OP44507	MSX218
OP44507-MSD	X06953.D	1	09/08/15	MR	09/05/15	OP44507	MSX218
MC41185-1	X06954.D	1	09/08/15	MR	09/05/15	OP44507	MSX218

The QC reported here applies to the following samples:

MC41122-46, MC41122-47, MC41122-48, MC41122-49

CAS No.	Compound	MC41185-1 ug/l Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
95-48-7	2-Methylphenol	ND	500	400	80	500	385	77	4	30-130/20
	3&4-Methylphenol	ND	1000	734	73	1000	704	70	4	30-130/20
87-86-5	Pentachlorophenol	ND	500	489	98	500	497	99	2	30-130/20
95-95-4	2,4,5-Trichlorophenol	ND	500	520	104	500	511	102	2	30-130/20
88-06-2	2,4,6-Trichlorophenol	ND	500	489	98	500	489	98	0	30-130/20
106-46-7	1,4-Dichlorobenzene	ND	500	239	48	500	287	57	18	40-140/20
121-14-2	2,4-Dinitrotoluene	ND	500	504	101	500	503	101	0	40-140/20
118-74-1	Hexachlorobenzene	ND	500	459	92	500	466	93	2	40-140/20
87-68-3	Hexachlorobutadiene	ND	500	285	57	500	347	69	20	40-140/20
67-72-1	Hexachloroethane	ND	500	231	46	500	282	56	20	40-140/20
98-95-3	Nitrobenzene	ND	500	447	89	500	444	89	1	40-140/20
110-86-1	Pyridine	ND	500	168	34	500	213	43	24* a	10-86/20

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	MC41185-1	Limits
367-12-4 4165-62-2	2-Fluorophenol Phenol-d5	46% 35%	48% 35%	54% 38%	10-73% 10-58%
118-79-6	2,4,6-Tribromophenol	95%	97%	100%	15-125%
4165-60-0 321-60-8	Nitrobenzene-d5 2-Fluorobiphenyl	94% 74%	95% 77%	96% 69%	23-120% 31-102%
1718-51-0	Terphenyl-d14	92%	94%	98%	42-124%

(a) High RPD due to possible matrix interference and/or sample non-homogeneity.



**o** 

^{* =} Outside of Control Limits.

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

Project: Behr, Peoria, IL

Method: SW846 8270D Matrix: LEACHATE

### Samples and QC shown here apply to the above method

Lab	Lab						
Sample ID	File ID	S1	<b>S2</b>	<b>S3</b>	<b>S4</b>	<b>S5</b>	<b>S6</b>
MC41122-46	X06955.D	41	32	97	79	67	100
MC41122-47	X06956.D	52	38	95	92	64	93
MC41122-48	X06957.D	40	31	88	75	63	91
MC41122-49	X06958.D	51	37	93	90	74	93
OP44507-BS	X06951.D	49	36	100	99	79	92
OP44507-MB	X06950.D	47	35	99	90	74	94
OP44507-MS	X06952.D	46	35	95	94	74	92
OP44507-MSD	X06953.D	48	35	97	95	77	94

Surrogate Recovery Compounds Limits

S1 = 2-Fluorophenol	10-73%
S2 = Phenol-d5	10-58%
S3 = 2,4,6-Tribromophenol	15-125%
S4 = Nitrobenzene-d5	23-120%
S5 = 2-Fluorobiphenyl	31-102%
S6 = Terphenyl-d14	42-124%





# GC Semi-volatiles

# QC Data Summaries

# Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries



**Method:** SW846 8151

# **Method Blank Summary**

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44496-MB	File ID YZ94964.D	<b>DF</b> 1	<b>Analyzed</b> 09/11/15	<b>By</b> NK	<b>Prep Date</b> 09/04/15	Prep Batch OP44496	Analytical Batch GYZ7825

The QC reported here applies to the following samples:

MC41122-46, MC41122-47, MC41122-48, MC41122-49

CAS No.	Compound	Result	RL	MDL	Units Q
94-75-7	2,4-D	ND	10	4.6	ug/l
93-72-1	2,4,5-TP (Silvex)	ND	10	1.3	ug/l

CAS No. Surrogate Recoveries Limits

19719-28-9 2,4-DCAA 70% 30-150% 19719-28-9 2,4-DCAA 66% 30-150%



**Method:** SW846 8081B

# Method Blank Summary Job Number: MC41122

CRACT GHD Services Inc. **Account:** 

Behr, Peoria, IL **Project:** 

Sample OP44497-MB	File ID BE47930.D	<b>DF</b> 1	<b>Analyzed</b> 09/12/15	<b>By</b> NK	<b>Prep Date</b> 09/04/15	Prep Batch OP44497	Analytical Batch GBE2406

#### The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
58-89-9	gamma-BHC (Lindane)	ND	0.50	0.11	ug/l
	Chlordane	ND	5.0	1.1	ug/l
72-20-8	Endrin	ND	0.50	0.18	ug/l
76-44-8	Heptachlor	ND	0.50	0.14	ug/l
1024-57-3	Heptachlor epoxide	ND	0.50	0.097	ug/l
72-43-5	Methoxychlor	ND	0.50	0.17	ug/l
8001-35-2	Toxaphene	ND	25	1.3	ug/l

CAS No.	<b>Surrogate Recoveries</b>		Limits
877-09-8	Tetrachloro-m-xylene	76%	30-150%
877-09-8	Tetrachloro-m-xylene	70%	30-150%
2051-24-3	Decachlorobiphenyl	85%	30-150%
2051-24-3	Decachlorobiphenyl	88%	30-150%



**Method:** SW846 8082A

# **Method Blank Summary**

Job Number: MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44491-MB	File ID BK51433.D	<b>DF</b> 1	<b>Analyzed</b> 09/14/15	<b>By</b> NK	<b>Prep Date</b> 09/04/15	Prep Batch OP44491	Analytical Batch GBK1609

### The QC reported here applies to the following samples:

MC41122-35, MC41122-36, MC41122-37, MC41122-38, MC41122-40, MC41122-41, MC41122-42, MC41122-43, MC41122-44, MC41122-45, MC41122-50, MC41122-51, MC41122-52, MC41122-53, MC41122-54

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	33	9.3	ug/kg
11104-28-2	Aroclor 1221	ND	33	8.2	ug/kg
11141-16-5	Aroclor 1232	ND	33	9.6	ug/kg
53469-21-9	Aroclor 1242	ND	33	10	ug/kg
12672-29-6	Aroclor 1248	ND	33	11	ug/kg
11097-69-1	Aroclor 1254	ND	33	8.5	ug/kg
11096-82-5	Aroclor 1260	ND	33	4.8	ug/kg

CAS No.	Surrogate Recoveries		Limits
877-09-8	Tetrachloro-m-xylene	74%	35-136%
877-09-8	Tetrachloro-m-xylene	75%	35-136%
2051-24-3	Decachlorobiphenyl	113%	24-171%
2051-24-3	Decachlorobiphenyl	116%	24-171%



**Method:** SW846 8082A

# **Method Blank Summary**

Job Number: MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44490-MB	File ID BK51428.D	<b>DF</b> 1	<b>Analyzed</b> 09/14/15	By NK	<b>Prep Date</b> 09/09/15	Prep Batch OP44490	Analytical Batch GBK1609

### The QC reported here applies to the following samples:

MC41122-19, MC41122-20, MC41122-21, MC41122-22, MC41122-23, MC41122-24, MC41122-25, MC41122-26, MC41122-27, MC41122-28, MC41122-29, MC41122-30, MC41122-31, MC41122-32, MC41122-33, MC41122-34

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	33	9.4	ug/kg
11104-28-2	Aroclor 1221	ND	33	8.3	ug/kg
11141-16-5	Aroclor 1232	ND	33	9.8	ug/kg
53469-21-9	Aroclor 1242	ND	33	10	ug/kg
12672-29-6	Aroclor 1248	ND	33	12	ug/kg
11097-69-1	Aroclor 1254	ND	33	8.7	ug/kg
11096-82-5	Aroclor 1260	ND	33	4.9	ug/kg

CAS No.	<b>Surrogate Recoveries</b>		Limits	
877-09-8	Tetrachloro-m-xylene	59%	35-136%	
877-09-8	Tetrachloro-m-xylene	60%	35-136%	
2051-24-3	Decachlorobiphenyl	98%	24-171%	
2051-24-3	Decachlorobiphenyl	95%	24-171%	



**Method:** SW846 8082A

# **Method Blank Summary**

**Job Number:** MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44590-MB	File ID BK51426.D	<b>DF</b> 1	<b>Analyzed</b> 09/14/15	<b>By</b> NK	<b>Prep Date</b> 09/11/15	Prep Batch OP44590	Analytical Batch GBK1609

#### The QC reported here applies to the following samples:

MC41122-1, MC41122-2, MC41122-3, MC41122-4, MC41122-5, MC41122-6, MC41122-7, MC41122-8, MC41122-9, MC41122-10, MC41122-11, MC41122-12, MC41122-13, MC41122-15, MC41122-16, MC41122-17, MC41122-18

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	32	8.9	ug/kg
11104-28-2	Aroclor 1221	ND	32	7.9	ug/kg
11141-16-5	Aroclor 1232	ND	32	9.3	ug/kg
53469-21-9	Aroclor 1242	ND	32	9.8	ug/kg
12672-29-6	Aroclor 1248	ND	32	11	ug/kg
11097-69-1	Aroclor 1254	ND	32	8.2	ug/kg
11096-82-5	Aroclor 1260	ND	32	4.6	ug/kg

CAS No.	<b>Surrogate Recoveries</b>		Limits
877-09-8	Tetrachloro-m-xylene	94%	35-136%
877-09-8	Tetrachloro-m-xylene	94%	35-136%
2051-24-3	Decachlorobiphenyl	118%	24-171%
2051-24-3	Decachlorobiphenyl	106%	24-171%



**Method:** SW846 8082A

# Method Blank Summary Job Number: MC41122

CRACT GHD Services Inc. **Account:** 

**Project:** Behr, Peoria, IL

Sample OP44631-MB	File ID BK51558.D	<b>DF</b> 1	<b>Analyzed</b> 09/16/15	By NK	<b>Prep Date</b> 09/15/15	Prep Batch OP44631	Analytical Batch GBK1612

#### The QC reported here applies to the following samples:

MC41122-14, MC41122-39

CAS No.	Compound	Result	RL	MDL	Units Q
12674-11-2	Aroclor 1016	ND	33	9.3	ug/kg
11104-28-2	Aroclor 1221	ND	33	8.2	ug/kg
11141-16-5	Aroclor 1232	ND	33	9.6	ug/kg
53469-21-9	Aroclor 1242	ND	33	10	ug/kg
12672-29-6	Aroclor 1248	ND	33	11	ug/kg
11097-69-1	Aroclor 1254	ND	33	8.5	ug/kg
11096-82-5	Aroclor 1260	ND	33	4.8	ug/kg

CAS No.	<b>Surrogate Recoveries</b>		Limits
877-09-8	Tetrachloro-m-xylene	95%	35-136%
877-09-8	Tetrachloro-m-xylene	100%	35-136%
2051-24-3	Decachlorobiphenyl	110%	24-171%
2051-24-3	Decachlorobiphenyl	113%	24-171%



**Method:** SW846 8151

# **Leachate Blank Summary**

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

Project: Behr, Peoria, IL

Sample OP44496-LB	File ID YZ94964A.D	<b>DF</b> 1	<b>Analyzed</b> 09/11/15	By NK	<b>Prep Date</b> 09/04/15	Prep Batch OP44496	Analytical Batch GYZ7825

The QC reported here applies to the following samples:

MC41122-46, MC41122-47, MC41122-48, MC41122-49

CAS No.	Compound	Result	RL	MDL	Units Q
94-75-7	2,4-D	ND	10	4.6	ug/l
93-72-1	2,4,5-TP (Silvex)	ND	10	1.3	ug/l

CAS No. Surrogate Recoveries Limits

19719-28-9 2,4-DCAA 70% 30-150% 19719-28-9 2,4-DCAA 66% 30-150%



**Method:** SW846 8081B

# **Leachate Blank Summary Job Number:** MC41122

**Account:** CRACT GHD Services Inc.

Behr, Peoria, IL **Project:** 

Sample OP44497-LB	File ID BE47930A.D	<b>DF</b> 1	<b>Analyzed</b> 09/12/15	By NK	<b>Prep Date</b> 09/04/15	Prep Batch OP44497	Analytical Batch GBE2406

#### The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	MDL	Units Q
58-89-9	gamma-BHC (Lindane)	ND	0.50	0.11	ug/l
	Chlordane	ND	5.0	1.1	ug/l
72-20-8	Endrin	ND	0.50	0.18	ug/l
76-44-8	Heptachlor	ND	0.50	0.14	ug/l
1024-57-3	Heptachlor epoxide	ND	0.50	0.097	ug/l
72-43-5	Methoxychlor	ND	0.50	0.17	ug/l
8001-35-2	Toxaphene	ND	25	1.3	ug/l

CAS No.	Surrogate Recoveries		Limits
877-09-8	Tetrachloro-m-xylene	76%	30-150%
877-09-8	Tetrachloro-m-xylene	70%	30-150%
2051-24-3	Decachlorobiphenyl	85%	30-150%
2051-24-3	Decachlorobiphenyl	88%	30-150%



**Method:** SW846 8151

# Blank Spike Summary Job Number: MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44496-BS	<b>File ID</b> YZ94965.D	<b>DF</b> 1	<b>Analyzed</b> 09/11/15	By NK	<b>Prep Date</b> 09/04/15	Prep Batch OP44496	Analytical Batch GYZ7825

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
94-75-7	2,4-D	40	20.2	51	40-140
93-72-1	2,4,5-TP (Silvex)	40	20.5	51	40-140

CAS No.	Surrogate Recoveries	BSP	Limits
19719-28-9 19719-28-9	,	77% 71%	30-150% 30-150%
19/19-20-9	2,4-DCAA	/ 1 70	30-130%



^{* =} Outside of Control Limits.

**Method:** SW846 8081B

# Blank Spike Summary Job Number: MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44497-BS	File ID BE47931.D	<b>DF</b> 1	<b>Analyzed</b> 09/12/15	By NK	<b>Prep Date</b> 09/04/15	Prep Batch OP44497	Analytical Batch GBE2406

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
58-89-9	gamma-BHC (Lindane)	2	1.6	80	40-140
72-20-8	Endrin	2	2.1	105	40-140
76-44-8	Heptachlor	2	1.8	90	40-140
1024-57-3	Heptachlor epoxide	2	1.9	95	40-140
72-43-5	Methoxychlor	2	2.0	100	40-140

CAS No.	Surrogate Recoveries	BSP	Limits
877-09-8	Tetrachloro-m-xylene	77%	30-150%
877-09-8	Tetrachloro-m-xylene	72%	30-150%
2051-24-3	Decachlorobiphenyl	79%	30-150%
2051-24-3	Decachlorobiphenyl	81%	30-150%



^{* =} Outside of Control Limits.

**Method:** SW846 8082A

# **Blank Spike Summary**

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44491-BS	<b>File ID</b> BK51434.D	<b>DF</b> 1	<b>Analyzed</b> 09/14/15	<b>By</b> NK	<b>Prep Date</b> 09/04/15	Prep Batch OP44491	Analytical Batch GBK1609

#### The QC reported here applies to the following samples:

MC41122-35, MC41122-36, MC41122-37, MC41122-38, MC41122-40, MC41122-41, MC41122-42, MC41122-43, MC41122-44, MC41122-45, MC41122-50, MC41122-51, MC41122-52, MC41122-53, MC41122-54

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
12674-11-2	Aroclor 1016	253	245	97	47-143
11104-28-2	Aroclor 1221		ND		40-140
11141-16-5	Aroclor 1232		ND		40-140
53469-21-9	Aroclor 1242		ND		40-140
12672-29-6	Aroclor 1248		ND		40-140
11097-69-1	Aroclor 1254		ND		40-140
11096-82-5	Aroclor 1260	253	267	106	44-153

CAS No.	Surrogate Recoveries	BSP	Limits
877-09-8	Tetrachloro-m-xylene	95%	35-136%
877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	96% 116%	35-136% 24-171%
	Decachlorobiphenyl	119%	24-171%



^{* =} Outside of Control Limits.

**Method:** SW846 8082A

# **Blank Spike Summary**

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44490-BS	<b>File ID</b> BK51429.D	<b>DF</b> 1	<b>Analyzed</b> 09/14/15	<b>By</b> NK	<b>Prep Date</b> 09/09/15	Prep Batch OP44490	Analytical Batch GBK1609

### The QC reported here applies to the following samples:

MC41122-19, MC41122-20, MC41122-21, MC41122-22, MC41122-23, MC41122-24, MC41122-25, MC41122-26, MC41122-27, MC41122-28, MC41122-29, MC41122-30, MC41122-31, MC41122-32, MC41122-33, MC41122-34

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
12674-11-2	Aroclor 1016	257	233	91	47-143
11104-28-2	Aroclor 1221		ND		40-140
11141-16-5	Aroclor 1232		ND		40-140
53469-21-9	Aroclor 1242		ND		40-140
12672-29-6	Aroclor 1248		ND		40-140
11097-69-1	Aroclor 1254		ND		40-140
11096-82-5	Aroclor 1260	257	238	93	44-153

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
877-09-8	Tetrachloro-m-xylene	84%	35-136%
877-09-8	Tetrachloro-m-xylene	89%	35-136%
2051-24-3	Decachlorobiphenyl	99%	24-171%
2051-24-3	Decachlorobiphenyl	98%	24-171%



^{* =} Outside of Control Limits.

**Method:** SW846 8082A

# **Blank Spike Summary**

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample OP44590-BS	File ID BK51427.D	<b>DF</b> 1	<b>Analyzed</b> 09/14/15	<b>By</b> NK	<b>Prep Date</b> 09/11/15	Prep Batch OP44590	Analytical Batch GBK1609

#### The QC reported here applies to the following samples:

MC41122-1, MC41122-2, MC41122-3, MC41122-4, MC41122-5, MC41122-6, MC41122-7, MC41122-8, MC41122-9, MC41122-10, MC41122-11, MC41122-12, MC41122-13, MC41122-15, MC41122-16, MC41122-17, MC41122-18

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
12674-11-2	Aroclor 1016	251	254	101	47-143
11104-28-2	Aroclor 1221		ND		40-140
11141-16-5	Aroclor 1232		ND		40-140
53469-21-9	Aroclor 1242		ND		40-140
12672-29-6	Aroclor 1248		ND		40-140
11097-69-1	Aroclor 1254		ND		40-140
11096-82-5	Aroclor 1260	251	277	110	44-153

CAS No.	<b>Surrogate Recoveries</b>	BSP	Limits
877-09-8	Tetrachloro-m-xylene	100%	35-136%
877-09-8	Tetrachloro-m-xylene	101%	35-136%
2051-24-3	Decachlorobiphenyl	125%	24-171%
2051-24-3	Decachlorobiphenyl	117%	24-171%



^{* =} Outside of Control Limits.

**Method:** SW846 8082A

# Blank Spike Summary Job Number: MC41122

Account: CRACT GHD Services Inc.

Behr, Peoria, IL **Project:** 

Sample OP44631-BS	File ID BK51559.D	<b>DF</b> 1	<b>Analyzed</b> 09/16/15	By NK	<b>Prep Date</b> 09/15/15	Prep Batch OP44631	Analytical Batch GBK1612

The QC reported here applies to the following samples:

MC41122-14, MC41122-39

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
12674-11-2	Aroclor 1016	255	271	106	47-143
11104-28-2	Aroclor 1221		ND		40-140
11141-16-5	Aroclor 1232		ND		40-140
53469-21-9	Aroclor 1242		ND		40-140
12672-29-6	Aroclor 1248		ND		40-140
11097-69-1	Aroclor 1254		ND		40-140
11096-82-5	Aroclor 1260	255	295	116	44-153

877-09-8       Tetrachloro-m-xylene       97%       35-136%         877-09-8       Tetrachloro-m-xylene       99%       35-136%         2051-24-3       Decachlorobiphenyl       113%       24-171%         2051-24-3       Decachlorobiphenyl       117%       24-171%	CAS No.	Surrogate Recoveries	BSP	Limits
	877-09-8 2051-24-3	Tetrachloro-m-xylene Decachlorobiphenyl	99% 113%	35-136% 24-171%



^{* =} Outside of Control Limits.

# 4.1

Page 1 of 1

Method: SW846 8151

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

Project: Behr, Peoria, IL

File ID	DF	Analyzed	By	<b>Prep Date</b>	Prep Batch	<b>Analytical Batch</b>
YZ94966.D	1	09/11/15	NK	09/04/15	OP44496	GYZ7825
YZ94967.D	1	09/11/15	NK	09/04/15	OP44496	GYZ7825
YZ94968.D	1	09/11/15	NK	09/04/15	OP44496	GYZ7825
1251500.0	1	05/11/15	1112	07/04/13	01 11170	G127023
	YZ94966.D YZ94967.D	YZ94966.D 1 YZ94967.D 1	YZ94966.D 1 09/11/15 YZ94967.D 1 09/11/15	YZ94966.D 1 09/11/15 NK YZ94967.D 1 09/11/15 NK	YZ94966.D 1 09/11/15 NK 09/04/15 YZ94967.D 1 09/11/15 NK 09/04/15	YZ94966.D 1 09/11/15 NK 09/04/15 OP44496 YZ94967.D 1 09/11/15 NK 09/04/15 OP44496

The QC reported here applies to the following samples:

CAS No.	Compound	MC41122-4 ug/l Q	6 Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
94-75-7	2,4-D	ND	40	19.9	50	40	14.6	37	31* a	30-150/30
93-72-1	2,4,5-TP (Silvex)	ND	40	20.4	51	40	14.5	36	34* a	30-150/30

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	MC41122-4	6 Limits
	2,4-DCAA	73%	57%	41%	30-150%
	2,4-DCAA	68%	49%	52%	30-150%

⁽a) High RPD due to possible matrix interference and/or sample non-homogeneity.



^{* =} Outside of Control Limits.

**Method:** SW846 8081B

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

Project: Behr, Peoria, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP44497-MS	BE47932.D	1	09/12/15	NK	09/04/15	OP44497	GBE2406
OP44497-MSD	BE47933.D	1	09/12/15	NK	09/04/15	OP44497	GBE2406
MC41122-47	BE47935.D	1	09/12/15	NK	09/04/15	OP44497	GBE2406

The QC reported here applies to the following samples:

CAS No.	Compound	MC411 ug/l	122-47 Spike Q ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/l	MSD %	RPD	Limits Rec/RPD
58-89-9	gamma-BHC (Lindane)	ND	2	2.0	100	2	2.0	100	0	30-150/30
72-20-8	Endrin	ND	2	2.4	120	2	2.3	115	4	30-150/30
76-44-8	Heptachlor	ND	2	1.9	95	2	2.0	100	5	30-150/30
1024-57-3	Heptachlor epoxide	ND	2	2.2	110	2	2.1	105	5	30-150/30
72-43-5	Methoxychlor	ND	2	2.3	115	2	2.2	110	4	30-150/30

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	MC41122-4	7 Limits
	Tetrachloro-m-xylene	73%	78%	65%	30-150%
	Tetrachloro-m-xylene	68%	72%	60%	30-150%
	Decachlorobiphenyl	90%	84%	91%	30-150%
	Decachlorobiphenyl	92%	86%	94%	30-150%



^{* =} Outside of Control Limits.

**Method:** SW846 8082A

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC41122

Account: CRACT GHD Services Inc.

Project: Behr, Peoria, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
OP44491-MS	BK51498.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
OP44491-MSD	BK51499.D	1	09/15/15	NK	09/04/15	OP44491	GBK1609
MC41122-35	BK51444.D	1	09/14/15	NK	09/09/15	OP44491	GBK1609
MC41122-35	BB64527.D	50	09/14/15	NK	09/09/15	OP44491	GBB3483

#### The QC reported here applies to the following samples:

MC41122-35, MC41122-36, MC41122-37, MC41122-38, MC41122-40, MC41122-41, MC41122-42, MC41122-43, MC41122-44, MC41122-45, MC41122-50, MC41122-51, MC41122-52, MC41122-53, MC41122-54

CAS No.	Compound	MC41122-33 ug/kg Q	5 Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
12674-11-2	Aroclor 1016	ND	291	3470	1192**	¹ 298	3280	1100* 8	6	25-162/50
11104-28-2	Aroclor 1221	ND		ND			ND		nc	40-140/50
11141-16-5	Aroclor 1232	ND		ND			ND		nc	40-140/50
53469-21-9	Aroclor 1242	ND		ND			ND		nc	40-140/50
12672-29-6	Aroclor 1248	6120 ^b		8460			7840		8	40-140/50
11097-69-1	Aroclor 1254	10800 b		11000			10700		3	40-140/50
11096-82-5	Aroclor 1260	4310 b	291	5280	333* c	298	5280	325* c	0	18-177/50

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	MC41122-3	5 MC41122-3	5 Limits
877-09-8	Tetrachloro-m-xylene	95%	95%	96%	0% * d	35-136%
877-09-8	Tetrachloro-m-xylene	91%	92%	93%	0% * d	35-136%
2051-24-3	Decachlorobiphenyl	131%	115%	131%	0% * d	24-171%
2051-24-3	Decachlorobiphenyl	125%	134%	88%	0% * d	24-171%

- (a) Outside criteria due to presence of other Aroclors.
- (b) Result is from Run #2.
- (c) Outside control limits due to high level in sample relative to spike amount.
- (d) Outside control limits due to dilution.



^{* =} Outside of Control Limits.

**Method:** SW846 8082A

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
OP44490-MS	BK51493.D	1	09/15/15	NK	09/09/15	OP44490	GBK1609
OP44490-MSD	BK51494.D	1	09/15/15	NK	09/09/15	OP44490	GBK1609
MC41122-19	BK51456.D	1	09/14/15	NK	09/09/15	OP44490	GBK1609
MC41122-19	BK51501.D	50	09/15/15	NK	09/09/15	OP44490	GBK1610

#### The QC reported here applies to the following samples:

MC41122-19, MC41122-20, MC41122-21, MC41122-22, MC41122-23, MC41122-24, MC41122-25, MC41122-26, MC41122-27, MC41122-28, MC41122-29, MC41122-30, MC41122-31, MC41122-32, MC41122-33, MC41122-34

CAS No.	Compound	MC41122-19 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
12674-11-2	Aroclor 1016	ND	281	4480	1592* a	287	3570	1243* a	23	25-162/50
11104-28-2	Aroclor 1221	ND		ND			ND		nc	40-140/50
11141-16-5	Aroclor 1232	ND		ND			ND		nc	40-140/50
53469-21-9	Aroclor 1242	ND		ND			ND		nc	40-140/50
12672-29-6	Aroclor 1248	9480 ^b		10600			7480		35	40-140/50
11097-69-1	Aroclor 1254	13500 b		11900			10900		9	40-140/50
11096-82-5	Aroclor 1260	3140 b	281	6170	1077* 0	287	5660	877* c	9	18-177/50

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	MC41122-1	9 MC41122-1	9 Limits
877-09-8	Tetrachloro-m-xylene	109%	108%	115%	0% * d	35-136%
877-09-8	Tetrachloro-m-xylene	102%	101%	107%	0% * d	35-136%
2051-24-3	Decachlorobiphenyl	147%	154%	145%	0% * d	24-171%
2051-24-3	Decachlorobiphenyl	154%	140%	158%	0% * d	24-171%

- (a) Outside criteria due to presence of other Aroclors.
- (b) Result is from Run #2.
- (c) Outside control limits due to high level in sample relative to spike amount.
- (d) Outside control limits due to dilution.



^{* =} Outside of Control Limits.

**Method:** SW846 8082A

### Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
OP44590-MS	BK51491.D	1	09/15/15	NK	09/11/15	OP44590	GBK1609
OP44590-MSD	BK51492.D	1	09/15/15	NK	09/11/15	OP44590	GBK1609
MC41122-6	BK51440.D	1	09/14/15	NK	09/11/15	OP44590	GBK1609
MC41122-6	BB64513.D	20	09/14/15	NK	09/11/15	OP44590	GBB3483

#### The QC reported here applies to the following samples:

MC41122-1, MC41122-2, MC41122-3, MC41122-4, MC41122-5, MC41122-6, MC41122-7, MC41122-8, MC41122-9, MC41122-10, MC41122-11, MC41122-12, MC41122-13, MC41122-15, MC41122-16, MC41122-17, MC41122-18

CAS No.	Compound	MC41122-6 ug/kg Q	Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
12674-11-2	Aroclor 1016	ND	293	2060	704* a	298	2480	832* a	19	25-162/50
11104-28-2	Aroclor 1221	ND		ND			ND		nc	40-140/50
11141-16-5	Aroclor 1232	ND		ND			ND		nc	40-140/50
53469-21-9	Aroclor 1242	ND		ND			ND		nc	40-140/50
12672-29-6	Aroclor 1248	5130 b		3920			4700		18	40-140/50
11097-69-1	Aroclor 1254	5740 b		5440			6110		12	40-140/50
11096-82-5	Aroclor 1260	1300 b	293	2860	533* c	298	3330	681* c	15	18-177/50

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	MC41122-6	MC41122-6	Limits
877-09-8	Tetrachloro-m-xylene	90%	87%	101%	0% * d	35-136%
877-09-8	Tetrachloro-m-xylene	91%	82%	97%	0% * d	35-136%
2051-24-3	Decachlorobiphenyl	156%	236% * e	145%	0% * d	24-171%
2051-24-3	Decachlorobiphenyl	152%	111%	145%	0% * d	24-171%

- (a) Outside criteria due to presence of other Aroclors.
- (b) Result is from Run #2.
- (c) Outside control limits due to high level in sample relative to spike amount.
- (d) Outside control limits due to dilution.
- (e) Outside control limits due to possible matrix interference.



^{* =} Outside of Control Limits.

**Method:** SW846 8082A

# Matrix Spike/Matrix Spike Duplicate Summary

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	<b>Analytical Batch</b>
OP44631-MS	BK51562.D	1	09/16/15	NK	09/15/15	OP44631	GBK1612
OP44631-MSD	BK51563.D	1	09/16/15	NK	09/15/15	OP44631	GBK1612
MC41122-14	BK51560.D	1	09/16/15	NK	09/15/15	OP44631	GBK1612
MC41122-14	BK51564.D	100	09/16/15	NK	09/15/15	OP44631	GBK1612

The QC reported here applies to the following samples:

MC41122-14, MC41122-39

CAS No.	Compound	MC41122-14 ug/kg Q	4Spike ug/kg	MS ug/kg	MS %	Spike ug/kg	MSD ug/kg	MSD %	RPD	Limits Rec/RPD
12674-11-2	Aroclor 1016	ND	294	6640	2256* 8	298	5920	1989* a	11	25-162/50
11104-28-2	Aroclor 1221	ND		ND			ND		nc	40-140/50
11141-16-5	Aroclor 1232	ND		ND			ND		nc	40-140/50
53469-21-9	Aroclor 1242	ND		ND			ND		nc	40-140/50
12672-29-6	Aroclor 1248	16500 ^b		14800			13800		7	40-140/50
11097-69-1	Aroclor 1254	19800 ^b		13800			13300		4	40-140/50
11096-82-5	Aroclor 1260	3130 b J	294	6370	999* с	298	6070	988* c	5	18-177/50

CAS No.	<b>Surrogate Recoveries</b>	MS	MSD	MC41122-14 MC41122-14 Li		4 Limits
877-09-8	Tetrachloro-m-xylene	104%	84%	97%	0% * d	35-136%
877-09-8	Tetrachloro-m-xylene	97%	77%	89%	0% * d	35-136%
2051-24-3	Decachlorobiphenyl	131%	142%	120%	0% * d	24-171%
2051-24-3	Decachlorobiphenyl	128%	131%	116%	0% * d	24-171%

- (a) Outside criteria due to presence of other Aroclors.
- (b) Result is from Run #2.
- (c) Outside control limits due to high level in sample relative to spike amount.
- (d) Outside control limits due to dilution.



^{* =} Outside of Control Limits.

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

Project: Behr, Peoria, IL

Method: SW846 8151 Matrix: LEACHATE

### Samples and QC shown here apply to the above method

Lab		
File ID	S1 a	<b>S1</b> b
V704060 D	4.1	50
	41	52
YZ94969.D	49	61
YZ94970.D	49	62
YZ94971.D	49	62
YZ94965.D	77	71
YZ94964A.D	70	66
YZ94964.D	70	66
YZ94966.D	73	68
YZ94967.D	57	49
	YZ94968.D YZ94969.D YZ94970.D YZ94971.D YZ94965.D YZ94964A.D YZ94966.D	File ID       S1 a         YZ94968.D       41         YZ94969.D       49         YZ94970.D       49         YZ94971.D       49         YZ94965.D       77         YZ94964A.D       70         YZ94966.D       73

Surrogate Recovery Compounds Limits

S1 = 2,4-DCAA 30-150%

(a) Recovery from GC signal #2

(b) Recovery from GC signal #1



Job Number: MC41122

**Account:** CRACT GHD Services Inc.

Project: Behr, Peoria, IL

Method: SW846 8081B Matrix: LEACHATE

### Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File ID	<b>S1</b> a	<b>S1</b> b	<b>S2</b> a	<b>S2</b> b
MC41122-46	BE47934.D	78	72	94	96
MC41122-47	BE47935.D	65	60	91	94
MC41122-48	BE47936.D	63	58	87	90
MC41122-49	BE47937.D	83	77	89	93
OP44497-BS	BE47931.D	77	72	79	81
OP44497-LB	BE47930A.D	76	70	85	88
OP44497-MB	BE47930.D	76	70	85	88
OP44497-MS	BE47932.D	73	68	90	92
OP44497-MSD	BE47933.D	78	72	84	86

Surrogate Recovery Compounds Limits

S1 = Tetrachloro-m-xylene 30-150% S2 = Decachlorobiphenyl 30-150%

(a) Recovery from GC signal #1(b) Recovery from GC signal #2



Job Number: MC41122

**Account:** CRACT GHD Services Inc.

Project: Behr, Peoria, IL

Method: SW846 8082A Matrix: SO

### Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	<b>S1</b> a	<b>S1</b> b	<b>S2</b> a	<b>S2</b> b
Sample 1D	riie iD	31	31	32	52
MC41122-1	BB64508.D	0* c	0* c	0* c	0* c
MC41122-1	BK51435.D	92	90	135	123
MC41122-1	BK51338.D	98	97	122	118
MC41122-2	BB64509.D	0* c	0* c	0* c	0* c
MC41122-2	BK51436.D	95	89	122	119
MC41122-2	BK51339.D	103	86	127	133
MC41122-3	BK51437.D	109	98	136	129
MC41122-3	BB64510.D	0* c	0* c	0* c	0* c
MC41122-3	BK51340.D	52	54	65	64
MC41122-4	BK51438.D	99	93	127	146
MC41122-4	BB64511.D	0* c	0* c	0* c	0* c
MC41122-4	BK51341.D	97	98	119	119
MC41122-5	BK51439.D	99	91	127	138
MC41122-5	BB64512.D	0* c	0* c	0* c	0* c
MC41122-5	BK51342.D	99	98	120	132
MC41122-6	BB64513.D	0* c	0* c	0* c	0* c
MC41122-6	BK51440.D	101	97	145	145
MC41122-6	BK51343.D	35	37	52	50
MC41122-7	BB64514.D	0* c	0* c	0* c	0* c
MC41122-7	BK51441.D	98	94	132	120
MC41122-7	BK51344.D	98	96	118	124
MC41122-8	BK51443.D	100	99	123	142
MC41122-8	BB64515.D	0* c	0* c	0* c	0* c
MC41122-8	BK51345.D	90	84	118	124
MC41122-9	BK51445.D	82	87	131	95
MC41122-9	BB64516.D	0* c	0* c	0* c	0* c
MC41122-9	BK51347.D	95	95	116	111
MC41122-10	BB64517.D	0* c	0* c	0* c	0* c
MC41122-10	BK51446.D	106	103	149	142
MC41122-10	BK51348.D	95	89	130	121
MC41122-11	BB64519.D	0* c	0* c	0* c	0* c
MC41122-11	BK51447.D	106	102	117	120
MC41122-11	BK51349.D	100	97	103	105
MC41122-12	BK51448.D	107	106	117	110
MC41122-12	BB64520.D	108	111	139	167
MC41122-12	BK51350.D	96	94	104	104
MC41122-13	BK51449.D	95	91	134	137
MC41122-13	BB64521.D	0* c	0* c	0* c	0* c
MC41122-13	BK51351.D	102	91	143	146
MC41122-14	BK51560.D	97	89	120	116



# Semivolatile Surrogate Recovery Summary Job Number: MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

**Method:** SW846 8082A Matrix: SO

### Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	<b>S1</b> a	<b>S1</b> b	<b>S2</b> a	<b>S2</b> b
~ · <b>F</b>		~-	~-	~-	~-
MC41122-14	BK51564.D	0* c	0* c	0* c	0* c
MC41122-14	BK51352.D	98	97	110	101
MC41122-15	BB64523.D	0* c	0* c	0* c	0* c
MC41122-15	BK51451.D	99	98	138	125
MC41122-15	BK51353.D	102	95	132	120
MC41122-16	BB64524.D	0* c	0* c	0* c	0* c
MC41122-16	BK51452.D	105	96	149	144
MC41122-16	BK51354.D	101	101	136	128
MC41122-17	BK51454.D	80	81	109	107
MC41122-17	BB64525.D	0* c	0* c	0* c	0* c
MC41122-17	BK51355.D	98	92	149	128
MC41122-18	BK51455.D	45	46	70	69
MC41122-18	BB64526.D	0* c	0* c	0* c	0* c
MC41122-18	BK51356.D	103	109	139	120
MC41122-19	BK51501.D	0* c	0* c	0* c	0* c
MC41122-19	BK51456.D	115	107	145	158
MC41122-20	BK51502.D	0* c	0* c	0* c	0* c
MC41122-20	BK51457.D	97	90	128	100
MC41122-21	BK51503.D	0* c	0* c	0* c	0* c
MC41122-21	BK51458.D	109	101	151	165
MC41122-22	BK51504.D	0* c	0* c	0* c	0* c
MC41122-22	BK51459.D	79	84	128	128
MC41122-23	BK51505.D	0* c	0* c	0* c	0* c
MC41122-23	BK51460.D	117	114	134	137
MC41122-24	BK51506.D	0* c	0* c	0* c	0* c
MC41122-24	BK51461.D	108	109	144	137
MC41122-25	BK51507.D	0* c	0* c	0* c	0* c
MC41122-25	BK51462.D	69	59	124	119
MC41122-26	BK51508.D	0* c	0* c	0* c	0* c
MC41122-26	BK51463.D	109	103	156	143
MC41122-27	BK51509.D	0* c	0* c	0* c	0* c
MC41122-27	BK51465.D	101	95	144	134
MC41122-28	BK51510.D	0* c	0* c	0* c	0* c
MC41122-28	BK51466.D	100	97	133	140
MC41122-29	BK51512.D	0* c	0* c	0* c	0* c
MC41122-29	BK51467.D	105	108	139	134
MC41122-30	BK51513.D	0* c	0* c	0* c	0* c
MC41122-30	BK51468.D	103	94	129	122
MC41122-31	BK51514.D	0* c	0* c	0* c	0* c
MC41122-31	BK51469.D	93	101	147	140



# Semivolatile Surrogate Recovery Summary Job Number: MC41122

Account: CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

**Method:** SW846 8082A Matrix: SO

### Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	<b>S1</b> ^a	<b>S1</b> b	<b>S2</b> a	<b>S2</b> b
MC41122-32	BK51515.D	0* c	0* c	0* c	0* c
MC41122-32 MC41122-32	BK51470.D	117	113	161	135
MC41122-32 MC41122-33	BK51516.D	0* c	0* c	0* c	0* c
MC41122-33 MC41122-33	BK51471.D	108	101	151	139
MC41122-33 MC41122-34	BK51517.D	0* c	0* c	0* c	0* c
MC41122-34 MC41122-34	BK51472.D	107	100	153	136
MC41122-34 MC41122-35	BB64527.D	0* c	0* c	0* c	0* c
MC41122-35 MC41122-35	BK51444.D	96	93	131	88
		0* c	0* c	0* c	
MC41122-36	BB64530.D	Ü	•	Ü	0* c
MC41122-36	BK51473.D	96	91	118	121
MC41122-37	BB64531.D	0* c	0* c	0* c	0* c
MC41122-37	BK51474.D	103	100	110	149
MC41122-38	BB64532.D	0* c	0* c	0* c	0* c
MC41122-38	BK51476.D	96	95	120	110
MC41122-39	BK51561.D	96	94	113	106
MC41122-39	BK51565.D	100	97	129	139
MC41122-39	BK51477.D	14* ^d	13* ^d	20* d	21* d
MC41122-40	BB64534.D	68	63	107	127
MC41122-40	BK51478.D	68	69	88	89
MC41122-41	BB64535.D	0* c	0* c	0* c	0* c
MC41122-41	BK51479.D	89	86	115	133
MC41122-42	BB64536.D	0* c	0* c	0* c	0* c
MC41122-42	BK51480.D	95	94	115	151
MC41122-43	BB64537.D	0* c	0* c	0* c	0* c
MC41122-43	BK51481.D	92	93	128	121
MC41122-44	BB64538.D	0* c	0* c	0* c	0* c
MC41122-44	BK51482.D	62	59	82	92
MC41122-45	BB64539.D	56	60	83	93
MC41122-45	BK51483.D	63	64	70	69
MC41122-50	BK51518.D	30* e	24* e	41	48
MC41122-50	BK51484.D	23* e	24* e	34	34
MC41122-51	BK51519.D	0* c	0* c	0* c	0* c
MC41122-51	BK51485.D	94	93	138	136
MC41122-52	BK51520.D	0* c	0* c	0* c	0* c
MC41122-52	BK51487.D	83	81	122	122
MC41122-53	BK51521.D	0* c	0* c	0* c	0* c
MC41122-53	BK51488.D	98	96	131	138
MC41122-54	BK51523.D	0* c	0* c	0* c	0* c
MC41122-54	BK51489.D	91	94	110	130
OP44490-BS	BK51429.D	84	89	99	98
OP44490-BS	BK51429.D	84	89	99	98



### Semivolatile Surrogate Recovery Summary

Job Number: MC41122

**Account:** CRACT GHD Services Inc.

**Project:** Behr, Peoria, IL

Method: SW846 8082A Matrix: SO

#### Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File ID	<b>S1</b> a	<b>S1</b> b	<b>S2</b> a	<b>S2</b> b
OP44490-MB	BK51428.D	59	60	98	95
OP44490-MS	BK51493.D	109	102	147	154
OP44490-MSD	BK51494.D	108	101	154	140
OP44491-BS	BK51434.D	95	96	116	119
OP44491-MB	BK51433.D	74	75	113	116
OP44491-MS	BK51498.D	95	91	131	125
OP44491-MSD	BK51499.D	95	92	115	134
OP44590-BS	BK51427.D	100	101	125	117
OP44590-MB	BK51426.D	94	94	118	106
OP44590-MS	BK51491.D	90	91	156	152
OP44590-MSD	BK51492.D	87	82	236* d	111
OP44631-BS	BK51559.D	97	99	113	117
OP44631-MB	BK51558.D	95	100	110	113
OP44631-MS	BK51562.D	104	97	131	128
OP44631-MSD	BK51563.D	84	77	142	131

# Surrogate Recovery Compounds Limits

S1 = Tetrachloro-m-xylene 35-136% S2 = Decachlorobiphenyl 24-171%

- (a) Recovery from GC signal #1
- (b) Recovery from GC signal #2
- (c) Outside control limits due to dilution.
- (d) Outside control limits due to possible matrix interference.
- (e) Outside control limits due to matrix interference. Confirmed by reanalysis.



## Metals Analysis

### QC Data Summaries

### Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries



#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

#### Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Matrix Type: LEACHATE Methods: SW846 6010C

Units: mg/l

Prep Date:

09/03/15

Metal	RL	IDL	MDL	MB raw	final
Aluminum	0.20	.0083	.028		
Antimony	0.0060	.0012	.002		
Arsenic	0.010	.0013	.0017	-0.00040	<0.010
Barium	0.50	.00021	.001	0.00020	<0.50
Beryllium	0.0040	.0001	.00025		
Bismuth	0.050	.00089	.0021		
Boron	0.10	.001	.0011		
Cadmium	0.0040	.00026	.00043	0.00010	<0.0040
Calcium	5.0	.0049	.015		
Chromium	0.010	.00029	.00048	-0.00010	<0.010
Cobalt	0.050	.00024	.00028		
Copper	0.025	.00058	.0024		
Gold	0.050	.00091	.0015		
Iron	0.10	.013	.017		
Lead	0.010	.001	.0017	-0.00010	<0.010
Lithium	0.50	.0008	.0025		
Magnesium	5.0	.023	.054		
Manganese	0.015	.00011	.0014		
Molybdenum	0.10	.00021	.0036		
Nickel	0.040	.00024	.0005		
Palladium	0.050	.0012	.0026		
Platinum	0.050	.0053	.0054		
Potassium	5.0	.03	.049		
Selenium	0.025	.0023	.002	0.00030	<0.025
Silicon	0.10	.0011	.03		
Silver	0.0050	.00043	.001	-0.00020	<0.0050
Sodium	5.0	.008	.077		
Sulfur					
Strontium	0.010	.00015	.00022		
Thallium	0.0050	.0012	.0017		
Tin	0.10	.00069	.00081		
Titanium					
Tungsten	0.10	.0028	.022		

## BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Methods: SW846 6010C

Matrix Type: LEACHATE Units: mg/l

Metal	RL	IDL	MDL	MB raw	final
Vanadium	0.010	.00029	.00051		
Zinc	0.10	.0003	.001		
Zirconium	0.050	.00019	.0012		

09/03/15

Associated samples MP25080: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

Prep Date:

146 of 171
ACCUTEST

MC41122

LABORATORIES

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Methods: SW846 6010C Matrix Type: LEACHATE Units:  $\mbox{mg/l}$ 

Prep Date:

09/03/15

Metal	MC41188- Original		Spikelot MPICP7		QC Limits
Aluminum					
Antimony					
Arsenic	0.0	0.54	0.50	108.0	75-125
Barium	1.3	3.3	2.0	100.0	75-125
Beryllium					
Bismuth					
Boron					
Cadmium	0.0077	0.54	0.50	106.5	75-125
Calcium					
Chromium	0.00080	0.48	0.50	95.8	75-125
Cobalt					
Copper					
Gold					
Iron					
Lead	0.14	1.2	1.0	106.0	75-125
Lithium					
Magnesium					
Manganese					
Molybdenum					
Nickel					
Palladium					
Platinum					
Potassium					
Selenium	0.0041	0.58	0.50	115.2	75-125
Silicon					
Silver	0.0	0.21	0.20	105.0	75-125
Sodium					
Sulfur					
Strontium					
Thallium					
Tin					
Titanium					
Tungsten					

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Methods: SW846 6010C

Units: mg/l Matrix Type: LEACHATE

09/03/15 Prep Date:

	MC41188-3A Spikelot	QC
Metal	Original MS MPICP7 % Red	Limits

Vanadium

Zinc

Zirconium

Associated samples MP25080: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Methods: SW846 6010C Matrix Type: LEACHATE Units:  $\mbox{mg/l}$ 

Prep Date:

09/03/15

Metal	MC41188- Original		Spikelot MPICP7	% Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic	0.0	0.53	0.50	106.0	1.9	20
Barium	1.3	3.3	2.0	100.0	0.0	20
Beryllium						
Bismuth						
Boron						
Cadmium	0.0077	0.53	0.50	104.5	1.9	20
Calcium						
Chromium	0.00080	0.48	0.50	95.8	0.0	20
Cobalt						
Copper						
Gold						
Iron						
Lead	0.14	1.2	1.0	106.0	0.0	20
Lithium						
Magnesium						
Manganese						
Molybdenum						
Nickel						
Palladium						
Platinum						
Potassium						
Selenium	0.0041	0.57	0.50	113.2	1.7	20
Silicon						
Silver	0.0	0.21	0.20	105.0	0.0	20
Sodium						
Sulfur						
Strontium						
Thallium						
Tin						
Titanium						
Tungsten						

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Methods: SW846 6010C

Units: mg/l Matrix Type: LEACHATE

Prep Date:

09/03/15

	MC41188-3A	Spikelot	MSD	QC
Metal	Original MSD	MPICP7 % Rec	RPD	Limit

Vanadium

Zinc

Zirconium

Associated samples MP25080: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

150 of 171 ACCUTEST MC41122

#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Methods: SW846 6010C Matrix Type: LEACHATE Units:  $\mbox{mg/l}$ 

Prep Date: 09/03/15

Aluminum Antimony Ardenic 0.53 0.50 106.0 80-120 Barium 2.0 2.0 100.0 80-120 Beryllium Biamuth Biamuth Boron Cadmium 0.52 0.50 104.0 80-120 Calcium Chromium 0.49 0.50 98.0 80-120 Cobalt Copper Gold Iron Lead 1.0 1.0 100.0 80-120 Lithium Magnesium Manganese Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sulfur Strontium Thallium Tin Titanium Tungsten	Metal	BSP Result	Spikelot MPICP7	% Rec	QC Limits
Arsenic 0.53 0.50 106.0 80-120 Barium 2.0 2.0 100.0 80-120 Beryllium  Bismuth  Boron  Cadmium 0.52 0.50 104.0 80-120  Calcium  Chromium 0.49 0.50 98.0 80-120  Cobalt  Copper Gold  Iron  Lead 1.0 1.0 100.0 80-120  Lithium  Magnesium  Manganese  Molybdenum  Nickel  Palladium  Platinum  Potassium  Selenium 0.57 0.50 114.0 80-120  Silicon  Silver 0.21 0.20 105.0 80-120  Sodium  Sulfur  Strontium  Thallium  Tin  Titanium	Aluminum				
Barium 2.0 2.0 100.0 80-120  Beryllium	Antimony				
Beryllium Bismuth Boron Cadmium 0.52 0.50 104.0 80-120 Calcium Chromium 0.49 0.50 98.0 80-120 Cobalt Copper Gold Iron Lead 1.0 1.0 100.0 80-120 Lithium Magnesium Manganese Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium	Arsenic	0.53	0.50	106.0	80-120
Boron Cadmium 0.52 0.50 104.0 80-120 Calcium Chromium 0.49 0.50 98.0 80-120 Cobalt Copper Gold Iron Lead 1.0 1.0 100.0 80-120 Lithium Magnesium Manganese Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium Titanium	Barium	2.0	2.0	100.0	80-120
Boron Cadmium 0.52 0.50 104.0 80-120 Calcium Chromium 0.49 0.50 98.0 80-120 Cobalt Copper Gold Iron Lead 1.0 1.0 100.0 80-120 Lithium Magnesium Manganese Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium	Beryllium				
Cadmium       0.52       0.50       104.0       80-120         Calcium       0.49       0.50       98.0       80-120         Cobalt	Bismuth				
Calcium Chromium 0.49 0.50 98.0 80-120 Cobalt Copper Gold Iron Lead 1.0 1.0 100.0 80-120 Lithium Magnesium Manganese Molybdenum Nickel Falladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium Titanium	Boron				
Chromium 0.49 0.50 98.0 80-120  Cobalt  Copper  Gold  Iron  Lead 1.0 1.0 100.0 80-120  Lithium  Magnesium  Manganese  Molybdenum  Nickel  Palladium  Platinum  Potassium  Selenium 0.57 0.50 114.0 80-120  Silicon  Silicon  Silver 0.21 0.20 105.0 80-120  Sodium  Sulfur  Strontium  Tin  Titanium  Titanium  Fina Jana 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Cadmium	0.52	0.50	104.0	80-120
Cobalt Copper Gold Iron Lead 1.0 1.0 100.0 80-120 Lithium Magnesium Manganese Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium Titanium  Soladia Sol	Calcium				
Copper Gold Iron Lead 1.0 1.0 100.0 80-120 Lithium Magnesium Manganese Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium  Iianium  Ii	Chromium	0.49	0.50	98.0	80-120
Gold Iron Lead 1.0 1.0 100.0 80-120 Lithium Magnesium Manganese Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium  Titanium  Selenium Selenium Titanium	Cobalt				
Iron Lead 1.0 1.0 100.0 80-120 Lithium Magnesium Manganese Molybdenum Nickel Palladium Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium  Titanium  Selenium 0.57 0.50 105.0 80-120	Copper				
Lead 1.0 1.0 100.0 80-120  Lithium  Magnesium  Manganese  Molybdenum  Nickel  Palladium  Platinum  Potassium  Selenium 0.57 0.50 114.0 80-120  Silicon  Silver 0.21 0.20 105.0 80-120  Sodium  Sulfur  Strontium  Thallium  Tin  Titanium  Titanium	Gold				
Lithium  Magnesium  Manganese  Molybdenum  Nickel  Palladium  Platinum  Potassium  Selenium 0.57 0.50 114.0 80-120  Silicon  Silver 0.21 0.20 105.0 80-120  Sodium  Sulfur  Strontium  Thallium  Tin  Titanium	Iron				
Magnesium Manganese Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Titanium  Sulfur Strontium Titanium	Lead	1.0	1.0	100.0	80-120
Manganese Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Titanium	Lithium				
Molybdenum Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium	Magnesium				
Nickel Palladium Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium	Manganese				
Palladium  Platinum  Potassium  Selenium 0.57 0.50 114.0 80-120  Silicon  Silver 0.21 0.20 105.0 80-120  Sodium  Sulfur  Strontium  Thallium  Tin  Titanium	Molybdenum				
Platinum Potassium Selenium 0.57 0.50 114.0 80-120 Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Tin Titanium	Nickel				
Potassium       Selenium       0.57       0.50       114.0       80-120         Silicon       Silver       0.21       0.20       105.0       80-120         Sodium       Sulfur       Strontium         Thallium       Tin       Titanium	Palladium				
Selenium       0.57       0.50       114.0       80-120         Silicon       0.21       0.20       105.0       80-120         Sodium       Sulfur       Strontium         Thallium       Tin       Titanium	Platinum				
Silicon Silver 0.21 0.20 105.0 80-120 Sodium Sulfur Strontium Thallium Titanium	Potassium				
Silver 0.21 0.20 105.0 80-120  Sodium  Sulfur  Strontium  Tin  Titanium	Selenium	0.57	0.50	114.0	80-120
Sodium Sulfur Strontium Thallium Tin Titanium	Silicon				
Sulfur Strontium Thallium Tin Titanium	Silver	0.21	0.20	105.0	80-120
Strontium Thallium Tin Titanium	Sodium				
Thallium Tin Titanium	Sulfur				
Tin Titanium	Strontium				
Titanium	Thallium				
	Tin				
Tungsten	Titanium				
	Tungsten				

#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Methods: SW846 6010C

Matrix Type: LEACHATE Units: mg/l

Prep Date: 09/03/15

BSP Spikelot QC Metal Result MPICP7 % Rec Limits

Vanadium

Zinc

Zirconium

Associated samples MP25080: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

#### SERIAL DILUTION RESULTS SUMMARY

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Methods: SW846 6010C Matrix Type: LEACHATE Units: ug/l

Prep Date: 09/03/15

Metal	MC41188- Original	3A SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic	0.00	0.00	NC	0-10
Barium	1260	1270	1.4	0-10
Beryllium				
Bismuth				
Boron				
Cadmium	7.70	7.60	1.3	0-10
Calcium				
Chromium	0.800	0.00	100.0(a)	0-10
Cobalt				
Copper				
Gold				
Iron				
Lead	141	145	2.7	0-10
Lithium				
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
Platinum				
Potassium				
Selenium	4.10	0.00	100.0(a)	0-10
Silicon				
Silver	0.00	0.00	NC	0-10
Sodium				
Sulfur				
Strontium				
Thallium				
Tin				
Titanium				
Tungsten				

#### SERIAL DILUTION RESULTS SUMMARY

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25080 Methods: SW846 6010C

Matrix Type: LEACHATE Units: ug/l

Prep Date: 09/03/15

MC41188-3A QC Metal Original SDL 1:5 %DIF Limits

Vanadium

Zinc

Zirconium

Associated samples MP25080: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes

(*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

154 of 171
ACCUTEST

MC41122

LABORATORIES

#### BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC41122
Account: CRACT - GHD Services Inc.

Project: Behr, Peoria, IL

QC Batch ID: MP25083 Methods: SW846 7470A Matrix Type: LEACHATE Units: mg/l

09/03/15 Prep Date:

			MB
Metal	RL IDL	MDL	raw final

0.00020 .000038 .000096 0.000032 <0.00020 Mercury

Associated samples MP25083: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\begin{tabular}{ll} \end{tabular}$ (anr) Analyte not requested

155 of 171 ACCUTEST MC41122

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25083 Methods: SW846 7470A Matrix Type: LEACHATE

Units: mg/l

09/03/15 Prep Date:

|--|

Mercury 0.0022 0.0055 0.0030 110.0 75-125

Associated samples MP25083: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25083 Methods: SW846 7470A Matrix Type: LEACHATE Units: mg/l

Prep Date:

09/03/15

MC41188-3A Spikelot MSD QC al Original MSD HGRWS1 % Rec RPD Lim
--------------------------------------------------------------------

Mercury 0.0022 0.0056 0.0030 113.3 1.8

Associated samples MP25083: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25083 Methods: SW846 7470A Matrix Type: LEACHATE

Units: mg/l

09/03/15 Prep Date:

Metal	MC41153- Original		Spikelot HGRWS1	% Rec	QC Limits
Mercury	0.0	0.0030	0.0030	100.0	75-125

Associated samples MP25083: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\hfill \hfill$ 

(N) Matrix Spike Rec. outside of QC limits



#### SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

QC Batch ID: MP25083 Methods: SW846 7470A

Matrix Type: LEACHATE Units: mg/l

Prep Date: 09/03/15

|--|--|--|

Mercury 0.0030 0.0030 100.0 80-120

Associated samples MP25083: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits  $\bar{\ }$ 





## General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



#### 

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Cyanide Reactivity	GP19512/GN51640	1.5	0.0	mg/kg				
Paint Filter Test	GN51714	0.50	<0.50	ml/100g				
Phenols	GP19535/GN51704	2.5	0.0	mg/kg	10.0	9.4	94.0	80-120%
Solids, Total	GN51731	100	<100	mg/kg				
Sulfide Reactivity	GP19513/GN51641	50	0.0	mg/kg				

#### Associated Samples:

Batch GN51714: MC41122-46, MC41122-47, MC41122-48, MC41122-49
Batch GN51731: MC41122-46, MC41122-47, MC41122-48, MC41122-49
Batch GP19512: MC41122-46, MC41122-47, MC41122-48, MC41122-49
Batch GP19513: MC41122-46, MC41122-47, MC41122-48, MC41122-49
Batch GP19535: MC41122-46, MC41122-47, MC41122-48, MC41122-49

(*) Outside of QC limits



9

## DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC41122
Account: CRACT - GHD Services Inc.
Project: Behr, Peoria, IL

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits	
Cyanide Reactivity	GP19512/GN51640	MC41069-2	mg/kg	0.0	0.0	0.0	0-20%	
Ignitability (Flashpoint)	GN51668	MC41176-1	Deg. F	>230	>230	0.0	0-20%	
Paint Filter Test	GN51714	MC41185-1	ml/100g	<0.50	<0.50	0.0	0-20%	
Solids, Percent	GN51653	MC41121-48	%	58.9	61.8	4.8	0-20%	
Solids, Percent	GN51654	MC41122-8	%	87.7	86.9	0.9	0-20%	
Solids, Percent	GN51655	MC41122-26	8	90.8	91.2	0.4	0-20%	
Solids, Percent	GN51669	MC41188-2	8	90.1	90.9	0.9	0-20%	
Solids, Percent	GN51679	MC41124-1	8	62.8	61.7	1.8	0-20%	
Solids, Total	GN51731	MC41122-46	mg/kg	883000	883000	0.0	0-20%	
Sulfide Reactivity	GP19513/GN51641	MC41069-2	mg/kg	0.0	0.0	0.0	0-20%	
pH	GN51707	MC41221-3	su	7.3	7.3	0.0	0-20%	

Associated Samples:

Batch GN51653: MC41122-1, MC41122-2, MC41122-3, MC41122-4, MC41122-5, MC41122-6, MC41122-7
Batch GN51654: MC41122-8, MC41122-9, MC41122-10, MC41122-11, MC41122-12, MC41122-13, MC41122-14, MC41122-15, MC41122-16, MC41122-17, MC41122-18, MC41122-19, MC41122-20, MC41122-21, MC41122-23, MC41122-24, MC41122-25
Batch GN51655: MC41122-26, MC41122-27, MC41122-28, MC41122-29, MC41122-30, MC41122-31, MC41122-32, MC41122-32, MC41122-33, MC41122-34, MC41122-35, MC41122-36, MC41122-37, MC41122-38, MC41122-39, MC41122-40, MC41122-41, MC41122-42, MC41122-43, MC41122-44, MC41122-45

Batch GN51668: MC41122-46, MC41122-47, MC41122-48, MC41122-49

Batch GN51669: MC41122-46, MC41122-47, MC41122-48, MC41122-49

 ${\tt Batch~GN51679:~MC41122-50,~MC41122-51,~MC41122-52,~MC41122-53,~MC41122-54}$ 

Batch GN51707: MC41122-46, MC41122-47, MC41122-48, MC41122-49 Batch GN51714: MC41122-46, MC41122-47, MC41122-48, MC41122-49 Batch GN51731: MC41122-46, MC41122-47, MC41122-48, MC41122-49 Batch GP19512: MC41122-46, MC41122-47, MC41122-48, MC41122-49 Batch GP19513: MC41122-46, MC41122-47, MC41122-48, MC41122-49

(*) Outside of QC limits

#### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Phenols	GP19535/GN51704	MC41122-46	mg/kg	0.0	12.5	11.0	88.1	75-125%

Associated Samples:

Batch GP19535: MC41122-46, MC41122-47, MC41122-48, MC41122-49

- (*) Outside of QC limits
  (N) Matrix Spike Rec. outside of QC limits



#### MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC41122 Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Phenols	GP19535/GN51704	MC41122-46	mg/kg	0.0	12.5	11.0	0.0	

Associated Samples:

Batch GP19535: MC41122-46, MC41122-47, MC41122-48, MC41122-49

- (*) Outside of QC limits
  (N) Matrix Spike Rec. outside of QC limits





Custod	y Docume	nts and Otl	ner Forms	
Accute	t New Jerse	y)		

· Chain of Custody



## CHAIN OF CUSTODY

ACC		ATORIES	30		495 Tech TEL: (50	Center 8)481-	We:	st, Bl	dg I, AX: (	Marlt 508)-	oro, MA 481-775	3 01752		est Job # st Quote # O. #:		<b>241122</b> ge 1 of 1
Cli	ent Informatio		1									_	Project			
Name		· Representation for the control of	Name	Subconti	act Labora	tory Inf	orm	atior	1			An	alytical I	nformati	on	
Accutest New I	England			Accur	test - New .	lercov					1	1		1		
Address			Address	7.000	OUT TYCKY	остасу					-	1	1			
50 D'Angelo Dr				2235	Route 130						1	1	1			
City Marlborough	State	Zip	City			State		Zip			┪	1		1	- 1	
Send Report to:	MA loromy\/G	01752 Daccutest.com		Dayto	n	NJ		088	10			1				A-15
ny questions contact:	Jeremy Vie		Contact:					7				1				
	481-6200 / (5	08)481-7753	Phone:		le Manage	ment								1		
			Collection	(732)	329-0200		_	_				l			i	18.00
			1		1	l	_		erva			l S	1		- 1	
Field ID / Point of (	Collection	Date	Time		Matrix	# of bottles	ට 다	NaOH	12804	god	Ď	BDENS	1	1		
MC41122 -46		8/27/15	9:14 AM		so	1	T	ZI	- I	-		+	<del> </del>			Comments
MC41122 -47		8/27/15	9:23 AM		so	<del></del>	H	+	+	X	+	X			+	
MC41122 -48		8/27/15	9:32 AM		so	1	Н	+	+-	_   X	+	X	-	<b>_</b>		
MC41122 -49		8/27/15	9:44 AM			1	H	+	╄	Х		X				
		0/2//13	9.44 AIVI		so	1	Н		_	X	Х	Х			1	
												L .			T	MA
								.	lini	TAL	SESSN	ENT_	io_	. /	$\neg$	, , ,
								Т	T	1			14	1-		
									LA	ELV	<del>110</del>	TION_		<del> </del>	+-	
							+	+	1	+	-			-		
							+	+	├-	+-				<u> </u>		
						Delivera	blo le					<u> </u>				
x STD		9/14/15					_		ation		L				its / Rema	
Other	(Days)				nmercial "A"	L		PDF						Compli	samples ance rep	s are subject to MC
	_(Days)	*Please notify Ad			nmercial "B"		$\Box$	Comp	act D	sk De	liverable			Compile	ance rep	orting.
		surcharges are a	pplied.	Cor	nmercial "BN	ı [		Electr	onic (	Delive	y:			İ		
				Red	uced Tier 1	Γ		State	Forms	•				1		
10 Day Turnaround Hardo approved.	opy, RUSH is F	AX Data unless prev	iously	Full	Tier 1	Г	$\exists$	Other	(Spec	ifv)						
Sample Custody must	be document	ed below each tim	e samples et			/_				,,				ł		
		Cuent Cuent till	e samples ci	Received I	ession, ine	luding	eou	rier c	delive	ry.						
1 Relinquished by:				1 ,	トシカル				1 4	7-3	1-15	ľ	Seal #:		Headsp	
2 Fe/ Ey	۷	9.64-15	9:50	Received E	1//			_	Date 8	Time:		90	Preserved	where ap	Yes I	No NA NA
Relinquished by:		Date & Time:		Received	Sy:	_			29	4-/	5 .					
3				3	7				3	ııme:		7.	Temperatu	rro °C	1.3℃	On Ice
						CAS	7			2 -4			- inperati		<u> ) r</u>	7
						A 00	5 ~	, 0	0 0	68	56	,54				

sm022-01 (10/30/14)

MC41122: Chain of Custody
Page 1 of 2
Accutest New Jersey







### **Accutest Laboratories Sample Receipt Summary**

Date / Time Received: 9/4/2015 9:50:00 AM Delivery Method: Airbill #'s:    Cooler Temps (Raw Measured) °C: Cooler 1: (4.3);   Cooler Temps (Corrected) °C: Cooler 1: (4.5);    Cooler Security	
Cooler Temps (Corrected) °C: Cooler 1: (4.5);  Cooler Security Y or N 1. Custody Seals Present:	
1. Custody Seals Present:	
3. Samples preserved properly:   4. VOCs headspace free:   □ □ ▼  3. Sufficient volume recvd for analysis:   4. Compositing instructions clear:   5. Filtering instructions clear:	Y or N  ✓ □  ✓ □  Y or N  ✓ □  Intact  Y or N N/A  ✓ □  □ □  □ □ □  □ □ □  □ □ □  □ □ □  □ □ □ □  □ □ □ □
Comments  Accutest Laboratories 2235 US Highway 130 F. 732 329 0200 F. 732 329 0499	Dayton, New Jersey

MC41122: Chain of Custody Page 2 of 2





## General Chemistry

QC Data Summaries

(Accutest New Jersey)

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



#### 

Login Number: MC41122
Account: ALNE - Accutest Labs of New England, Inc.
Project: CRACT: Behr, Peoria, IL

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Total Organic Halides	GP92000/GN32407	20	14.6	mg/kg	200	234	117.0	80-120%

Associated Samples: Batch GP92000: MC41122-46, MC41122-47, MC41122-48, MC41122-49 (*) Outside of QC limits



#### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC41122

Account: ALNE - Accutest Labs of New England, Inc. Project: CRACT: Behr, Peoria, IL

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Bulk Density (Dry Basis) Total Organic Halides	GN32041 GP92000/GN32459	MC41122-46 JC3709-7	g/ml mg/kg	1.1	1.1	0.0	0-36% 0-20%

Associated Samples: Batch GN32041: MC41122-46, MC41122-47, MC41122-48, MC41122-49 Batch GP92000: MC41122-46, MC41122-47, MC41122-48, MC41122-49

(*) Outside of QC limits



## MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC41122

Account: ALNE - Accutest Labs of New England, Inc. Project: CRACT: Behr, Peoria, IL

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Total Organic Halides	GP92000/GN32459	JC3709-7	mg/kg	0.0	200	189	94.3	35-152%

Associated Samples:

Batch GP92000: MC41122-46, MC41122-47, MC41122-48, MC41122-49

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits





10/16/15



## Technical Report for

GHD Services Inc.

Behr, Peoria, IL

11103179

Accutest Job Number: MC41122R

Sampling Date: 08/27/15

### Report to:

GHD Services Inc.

45 Farmington Valley Dr. Plainville, CT 06062

kathleen.shaw@ghd.com; douglas.soutter@ghd.com

ATTN: Kathy Shaw

Total number of pages in report: 19



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Client Service contact: Jeremy Vienneau 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) DoD ELAP (L-A-B L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Lab Director

### **Sections:**

## **Table of Contents**

-1-

Section 1: Sample Summary	3
Section 2: Summary of Hits	
Section 3: Sample Results	5
<b>3.1:</b> MC41122-47R: S-082715-GW-52	6
<b>3.2:</b> MC41122-49R: S-082715-GW-54	7
Section 4: Misc. Forms	8
4.1: Chain of Custody	9
Section 5: General Chemistry - QC Data Summaries	<b>16</b>
5.1: Method Blank and Spike Results Summary	17
5.2: Duplicate Results Summary	18
5.3: Matrix Spike Results Summary	



___

w

4

O



## **Sample Summary**

GHD Services Inc.

Job No: MC41122R

Behr, Peoria, IL Project No: 11103179

Sample	Collected			Matrix		Client	
Number	Date	Time By	Received	Code	Туре	Sample ID	
MC41122-47I	R08/27/15	09:23 JHCW	08/29/15	SO	Soil	S-082715-GW-52	
MC41122-49I	R08/27/15	09:44 JHCW	08/29/15	SO	Soil	S-082715-GW-54	

Soil samples reported on a dry weight basis unless otherwise indicated on result page.



**Summary of Hits** 

Job Number: MC41122R
Account: GHD Services Inc.
Project: Behr, Peoria, IL

**Collected:** 08/27/15

Lab Sample ID	Client Sample ID	Result/				
Analyte		Qual	RL	MDL	Units	Method

MC41122-47R S-082715-GW-52

No hits reported in this sample.

MC41122-49R S-082715-GW-54

No hits reported in this sample.



Sample Results
Report of Analysis



## **Report of Analysis**

Page 1 of 1

Client Sample ID: S-082715-GW-52 Lab Sample ID: MC41122-47R Matrix: SO - Soil

Date Sampled: 08/27/15 Date Received: 08/29/15 Percent Solids: 87.6

Project: Behr, Peoria, IL

#### **General Chemistry**

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a	< 0.13	0.13	mg/kg	1	10/13/15 12:09	CF	SW846 9012 M

(a) Analysis performed past the recommended holding time as per client instructions.

# **Report of Analysis**

Page 1 of 1

Client Sample ID: S-082715-GW-54 Lab Sample ID: MC41122-49R

Matrix: SO - Soil Percent Solids: 91.1

**Project:** Behr, Peoria, IL **Date Sampled:** 08/27/15 **Date Received:** 08/29/15

#### **General Chemistry**

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide ^a	< 0.13	0.13	mg/kg	1	10/13/15 12:08	CF	SW846 9012 M

(a) Analysis performed past the recommended holding time as per client instructions.



3 6.	-
M1sc	Forms

Custody Documents and Other Forms

Includes the following where applicable:

· Chain of Custody



	CONESTOGA-ROVERS & ASSOCIATES 8615 W: Bryn Mawr-Avenue Chicago, Illinois 60634 (773)380-9933 phone (773)380-6421 fax				SHIPI (Labo	PED TO pratory Nam			s page y y									n	<u>V4</u>	119 <del>3</del> 2
C	ツ (7 (7	73)380- 73)380-	9933 pho 6421 fax	ne		RENCE NUI	Selection countries	Control Value		PR	OJEC									10/12/15
100,000			tana salah dinadaktan	Y RECORD	AAA	PFIEC				1	) i. u	4.	Pe	85% × 4	۸.,	and courts and beginning	و الله المالية	uddin.	5, ,	
	PLER'S ATURE:			PRINTED NAME: 1	الا يورونية الأرياد				No. OF CONTAINERS		RAMI	ETEF	\ / /	//	//	//	//	//		REMARKS
SEQ.	DATE	TIME	SA	MPLE IDENTIFIC	ATIO	N No.	SAN		No. CONT/	٧.	<i>ij</i>	//	//	//	/	<u>/</u>	/,	4	_	REWARRO
	08. W. S.	034A	35 - 3	61.55 - GW	· (5)		K.	Nan-	1	74										
4		HOPC			- 07		1		A	Χ,										
	1	SAIN			- O.	3			1	Χ,									A CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF TH	
**\		3577			* (53 ₆					%									2\/	NATE AND TO
Garage Garage Garage		ONU.			- 65		1 1			×									-	- Grown ga
Ley		0440			- Olo				A	×		-		1000			-	-		<del>\\\</del>
$T\lambda$		250			-63	10 March 10 10 10 10 10 10 10 10 10 10 10 10 10	1-4		¥	246		-				38.54				
(A)		032			-3%				1	<b>%</b>						200				
9A		1565VBs	<u> </u>		-09				\ \ \	7								-		
40		( Colons			* (0					<u> </u>		+						+		
Wheel		W. California			* V V					- S.										
VV		85 <b>7</b> 23			- V I		1 1		V	×.				70.50				+		
3495		1027			19 3 60	7,17,17	++		Α	X				1 2 2 2 2			$\dashv$			
34	1	1027			~ 54		H		,	3				92.554	470.00					del Victorio de Victorio de Victorio.
1 Cap.		W355	-√ 	NUMBER OF CONTAI			<u> </u>		15	× 1			1	1			1			
			TOTAL	NUMBER OF CONTAI				Tee	CEIVED	DV.										DATE:
RELIN	QUISHED	BY: //	1. 4-	1 AG Lesson	+	DATE: %-& TIME: 100	<i>5</i>	2		DI.										TIME:
<u>U-</u>	QÜISHED	DN A	78 10 10 10 10	<del> </del>		DATE:			CEIVED	BY:								527		DATE:
RELIN	QUISHED	ву				TIME:		3												TIME:
	ELINQUISHED BY: DATE:							_	CEIVED	BY:									D.	DATE:
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ACTION OF CHIMMENT.					1,323.45			AIR B	ILL I	No.								83	MOTE
White Yello	White -Fully Executed Copy /ellow -Receiving Laboratory Copy		AMPLE	E TEAM:				F	ECE	VED	FOR	LAE	OR	ATO	RY	BY:		Y0560 <b>0</b>		
Pink Gold			No. Sec.	100				D	ATE:			TI	ME							

1001-00(SOURCE)GN-CO004

MC41122R: Chain of Custody
Page 1 of 7



COI	CONESTOGA-ROVERS & ASSOCIATES 8615 W. Bryn Mawr Avenue Chicago, Illinois 60631 (773)380-9933 phone (773)380-6421 fax		(Labo	PED TO pratory Nam			347 <b>\</b>											<u>a_</u>	7C41137	J.P.	
Ų.				Demonstra	RENCE NU	МВЕ	R:		14.10				ME:								101245
	CHA	IN-OF-	CUSTODY RECORD	11/1	$\mathcal{F}^{C}(c;\mathbb{C})$				0.000			100		χ., ζ. i	χ	miller	majoran.	ALLA SAS	`a		, <b>, ,</b>
SAM SIGN/	PLER'S ATURE:	/ S	PRINTED NAME:	<i>y</i> , <u>\</u>	who i			OF LINERS	PA	۱RA	ME	TER //	s/,	Ι,	/,	/,	/,		//	/	
SEQ. No.	DATE	TIME	SAMPLE IDENTIFIC	OITA	N No.		MPLE TRIX			27	//	//	//	//		//	//		$\angle$	/ REMAI	KS.
16	13. ii. B	Crei	5-38765-0%	) - i (#		5	) Nya		N												
57		1000	- / A	· \"\			ı	V	X												
VS.		troni		• (8				١	*					1888						SALLA	
<b>1-1</b>		tive.		* , %				N.	¥												
1,0		VVVS		<b>X</b>		<u> </u>	100	×.											The same		
11		1111		7. X					X												
22		3175		- 22			1	ì	X								1_	1			Markey T
¥ (		South.		< 23			1	Α	X												
2-4		ATTEN .		* 7,54					<b>`.</b>		ļ.,										
25		POEIL		- 15				1	X							122	1-				
		VON L		* Z.J.;					X							-		1 10,40			
		1315		*7.3				<u> </u>	N			1000	1000			+					
		1514	1 1 1	500 () 4 (4				A V	~	(2002) (2003)				200				200			-
333		1300	+	* 350		1000	7	λ	~		-	1000	10000	92.5		12.00				<u>ing ang panggalan</u> Sanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalanggalang	
			TOTAL NUMBER OF CONTAI					. 25				1	1	L							
V-1 1816	OUISHED E		/ //	7.5	DATE: 8 - 7		BE	CEIVED	BV.											DATE:	
1)	KOISHED E		Klari HANGKON		IME: 770		72													TIME:	
	UISHED E	3Y:		D	ATE:		REC	CEIVED	BY:	200						130	Copy.			DATE:	eta eta eta eta eta eta eta eta eta eta
_				Ţ	IME:		3													TIME:	
	QUISHED E	3 <b>Y</b> :			DATE:			CEIVED	BY:											DATE:	
<u> 3 _</u>					IME:		4													計器部	
WETH	IETHOD OF SHIPMENT:							AIR B	ILL	No.									8	31/5 OF	
	ellow -Receiving Laboratory Copy			AMPLE					F	REC	EIV	ED I	FOR	LA	вој	RAT	OR'	Y BY	: :	00056	
Pink Golde				Section of the second	, W. y	No.			D	ATI	<b>=</b> :			_ T	IME						

MC41122R: Chain of Custody

Page 2 of 7



col	GONESTOGA-ROVERS & ASSOCIATES 8615-W. Bryn-Mawr-Avenue Chicago, Illinois 60631. (773)380-9933 phone (773)380-6421 fax				(Labo	PED TO oratory Nan	344	SQU-100	S S S S S									m	C41132P
U				е	REFE	RENCE NU	IMBE	R:		PF	ROJE	ST N	AME:						10/12/19
10/100	CHA	IN-OF	-CUSTODY	RECORD	N. A.	50 PA					Y 8 W	prese	44		Service Constitution of the  Sandy R	,	. , . ,	,	
	PLER'S ATURE:	23		PRINTED NAME:	<u></u>	17-61			No. OF CONTAINERS	P	\RAM	ETEI	≀s/	//	//		//		REMARKS
SEQ. No.	DATE	TIME	SAN	PLE IDENTIFIC	OITA	N No.		MPLE TRIX	CONT		2/	//	//	$\mathbb{Z}$	//	//	//	<u> </u>	REMARKS
SV	08. LU 15.	CHIEF Y		8245-14	. 2.1		Sec.		1	×4									
2,-	1	051		( ) ( ) ( ) ( ) ( ) ( )	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				1	Υ.								A Property Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of	
*.3		HOR		1						·4.,								770	4/JD/GTS
a Sage		(4)			20 Sept 200					*4						44			
15		1140			- 10,5m	<u> </u>		<u> </u>	L	1%								-annual family	1200 PM
\$4.4.5 E		(425)			. 12,12			<u> </u>	X.	×,								<u>''</u>	
		W32	000000000				1	Y.,			1_	$\sqcup \sqcup$							
		de Constanting	45		1. 18. 1				1	×.								<u> </u>	
3.4		646AV			- 49			1	<b>1</b>	5 ₈₄									
40		my high	400 0000		~ <b>54</b> (5			1	Λ.	D.A.									
	<u> </u>	150%	0.0 (10.00)		* 771				Α	×						+		<u> 2000 an 1900</u>	
		, S	4	<u> </u>	* 547				1	*	2000		3,20						
	\$ 77 E	Child	<u>C</u> ,	82715 - (W)				-	Α	*						-			
44	564 HEED	1741		<u> </u>	in the second			1	Y	100									
4.3		146	- t	JMBER OF CONTAI	- 4 ⁵			<u> </u>	(5)	~			1						tigada), je samben u jeng. Sendadni u selitar svatska
			IDIALN	IMBER OF CONTAI						section.									DATE:
	QUISHED	вү:	1/4	et out		DATE: »		RE(	CEIVED	BY:									TIME:
			margarity and the			TIME:		-	CEIVED	DV-					7.000	Status			DATE:
RELIN	QUISHED	3Y:/				TIME:	iseliseleji. Destelere	<b>∃</b> (3)		٠,٠									TIME:
	DUISHED	37	Carrier and American	File was proportion		DATE:	45.000 15.000		CEIVED	BY:									DATE:
(3)_	VELIIVOOTIED DI				TIME:		4	(										AME IN	
	METHOD OF SHIPMENT:				At.			AIR B	ILL	No.							83115		
White	White -Fully Executed Copy SAMP				AMPLE	TEAM:		-Creph		T,	RECE	IVED	FOR	LAE	ORA	TORY	BY:		Ang abasa i
Yello			ing Laborate		X													n	95601
Pink	ink -Shipper Copy		and the second					-  r	ATE:			TI	ME:						
Golde	denrod -Sampler Copy			No Cale					<u>-L</u>										

1001-00(SOURCE)GN-CO004

MC41122R: Chain of Custody

Page 3 of 7



COI	27 CI	GA=R0 15 W. B nicago,	ryn Mawr A Illinois 606:	LASSOCIATES Avenue 31	SHIPPED TO (Laboratory Nar	ne):					,	4	1.	f en	-4-	_		mc41123
<u>ري</u>			933 phone 421 fax	è	REFERENCE NU	JMBER:		PR	OJE	CT N	IAM	E:	E	e k	γ.	φ,	rosia,	J. 11 14.
		ditta in indiana di s	CUSTODY	RECORD	1 1003.179								1	V.				
	PLER'S ATURE:		4.54	PRINTED NAME:	<del></del>	( ==	XBT A No. OF CONTAINERS	PA ¥		METE V	RS,	/)	ŽŽ	X	//	7	/#,	
SEQ. No.	DATE	TIME	SAM	PLE IDENTIFIC	CATION No.	SAMP	SIX SING	1			Ž _×	Ż	X	/	F.	Y 14		REMARKS
1	Sim it	of the	C. 19	7715 - 64	± 51	1581	-7	شوا	V	V	V	/	/ 1	4,	<i>2</i>			
1	ì	NAME OF			<i>ę</i> ,		7	line	10	V	V	44	4	1 4	7 1		Warner or other designation of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of the last of	Water St. W. Co.
J. Sally		5927				11.	3	1	V	V.	V	V 1	V 1	l v	42			77.5.
T Series		611	4	$\downarrow \qquad V$	54	$\perp \nu$	7	1	V	-4	V			1	4 3			7777
						90, 6466596 90, 6465396		1	7000									
			<u> </u>										-					<u>etalog a talyal alga ya ya ya ya ya 1</u> Maraba
	<u> 2600 - 27</u>			<u>eftjer i den gjeldete art frætig</u> Landst									24 72 20 22			4 2000 0 2000		
		3573 · 41 ·												14 23 5 14 23 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1		
11.4															1 2 2 2			
			<u></u>			<u>an material.</u> An enematic									T			<u>Marian Karamatan Baratan.</u> Marian kabupatèn Baratan
			<u> </u>													1000		gen om og tre of our ordered. Mene Medick of the office of our ordered.
											77				1			
				<u>eri japa kerilan dan arangan da.</u> Palamatan pengangan pengangan								20 00						Magazine Carloson
		5000 - 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOTAL NU	IMBER OF CONTA	INERS													Marian Land
EI IN	QUISHED	BV			DATE: 🦿	98 79	RECEIVED	BY:										DATE:
1)_	40101110		1,1	William Section		133	2											TIME:
	QUISHED	BY:	The second		DATE:		RECEIVED	BY:										DATE:
					TIME:		<u> </u>											TIME:
2)	LINQUISHED BY:				DATE:		RECEIVED	BY:									<b>18</b> 00A	DATE:
ELIN	QUISHED	) TIME					<u>(4)</u>										18	
ELIN	QUISHED																	
ELIN		SHIPME	NT:				AIR B	ILLI	No.								8	31/15-77
3)_	HOD OF	Fully Ex	NT: ecuted Cop	'Y	SAMPLE TEAM:		AIR B		202	IVE	) FC	R L	ABO	RAT	OR'	Y BY	': ':	31/15 m

1001-00(SOURCE)GN-CO004

MC41122R: Chain of Custody

Page 4 of 7



co	65	20 Corpo	OVERS & ASSOCIA	(TES SHI	PPED TO boratory Nar	ne):										
1			s, Indiana 46278	4	V. 37555	1000	.terente x v	2 Sample							ſ	MC41199
		<del>7) 291-7</del> ( <del>7) 328-2</del> (	007 phone		ERENCE NU			7	JEC.	NAM 1	E:					(4)
		·						70		. P.				. م. ح.		
		AIN-OF-	CUSTODY RECORD		110,20,20		1 00	DAE		TERS		~	7	7	77	
	IPLER'S ATURE: 👡	$\Leftrightarrow$	PRINT	ME: Cres	mesing		- NER	FAI		//	//	//	//	//	///	REMARKS
SEQ.	DATE	TIME	SAMPLE IDEN	TIFICATION	ON No.	SAMP		1	3 ³ /			$\angle$		//	$\angle$	REWARKS
44	1.F5.80	อาธน	5 - 0827 45-	(gw-4	6	Sam		X								
rā.	1	0756	1 1	1 -4			\	4								
18		07759		-4	8		1	1						$\perp$	2/6	Caronal
19		1400		-4	9		1	4				$\perp \perp$		1-1		
50		8080	1 1	,0	1 1	1	7				1-1		$\perp \perp$	7:-		
										11	_			1-1		
										+1		$\bot\bot$		++		
									1_			-		+		
							$\mathcal{A}$			$\bot \bot$				1-1		<u>Caragoria de la Caragoria de </u>
						$\perp$	$\Box$			1		1-1-	-	11		<del></del>
						1_				1		$\vdash$		$\vdash$	سسنت	
					_/_			-				<del> </del>		$\vdash$		<u> Paragonal Paragonal III. Il de la companya di Amerikan Bandara di Amerikan Bandara di Amerikan Bandara di Am</u>
								$\vdash$		4	4-	1		-		
				/_						1-1-	+-			1		
_									عبلت			LL		1		<u>a Colla De Adreso estriblica.</u> A presentativa Carreso
			TOTAL NUMBER OF C	ONTAINER			5_	<u> </u>								DATE
	QUISHED	BY:	al Han		DATE: 9-2		RECEIVED	BY.								TIME:
<u>1) –</u>			form stargen		DATE:		2 RECEIVED	201								DATE:
	IQUISHED	BY:	V		TIME:		(3)	Br.								TIME
<u> 2</u> )_					DATE:		RECEIVED	BV				Silver.				DATE:
3)_	QUISHED	BY:		4,647	TIME:		(4)									
	HOD OF	SHIPMI	INT: FEDEL PR	.z O	252161675		TRAC	KING	No.						,	8/3/115 7
Nhit	/hite -Fully Executed Copy SAMPLE TEA							RE	CEIV	ED FC	R LA	BORA	TOR	f BY:	į.	2483
	ellow -Receiving Laboratory Copy (reall be					· · · · · · · · · · · · · · · · · · ·	<u> </u>	-   -		1,17,17,17		<u> </u>				2700
Pink -Shipper Copy  Goldenrod -Sampler Copy						< =~ 5		DA	TE:_		7	IME:				

MC41122R: Chain of Custody

Page 5 of 7



# Jeremy Vienneau

Shaw, Kathy <Kathleen.Shaw@ghd.com> From: Sent:

Friday, October 09, 2015 2:58 PM Jeremy Vienneau

ë

Soutter, Doug; Project Email Filing RE: 11103179 ~VEN-11103179~ SSOW-11103179-20151009-001-R1.xlsm

Attachments: **Subject:** 

Hi Jeremy,

We would like to have samples -052 and -054 run for total CN on a 1 week turn. The revised SSOW is attached. Please contact me with any questions.

Thanks, Kathy From: Jeremy Vienneau [mailto:jeremyv@accutest.com]
Sent: Friday, October 09, 2015 1:41 PM
To: Shaw, Kathy
Subject: RE: 11103179

Hi Kathy,

We still have volume for both samples. Do you want them analyzed?

Regards,

Jeremy Vienneau

Project Manager Accutest Laboratories of NE Voice: 508.481.6200 Ext. 2106 Fax: 508.481.7753

ACCUTEST

jeremyv@accutest.com

"The National Testing Laboratory with Total Performance you can count on"

From: Shaw, Kathy [mailto:Kathleen.Shaw@qhd.com]
Sent: Friday, October 09, 2015 1:01 PM
To: Jeremy Vienneau
Subject: 11103179
Importance: High Hi Jeremy,

MC41122R: Chain of Custody Page 6 of 7



Our client is wondering if total cyanide can be calculated from reactive CN? If not, can you let me know if there is sample available for samples -052 and -054 to re-run even though it is out of holding time? Please let me know as soon as you can. Batch # is MC41122.

Thanks, Kathy

Kathleen Shaw

Data Solutions Group | Chemist

**GHD**1: +1 860 747 1890 | №: +1 850 985 3193 | E: <u>kathleen.shaw@ghd.com</u>
45 Parmington Volicy Drive Plainville CT 06062 USA | <u>www.shd.com</u>

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

This e-mail has been scanned for viruses

This e-mail has been scanned for viruses

MC41122R: Chain of Custody Page 7 of 7





# General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries



#### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC41122R Account: CRACT - GHD Services Inc.
Project: Behr, Peoria, IL

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Cyanide Cyanide	GP19677/GN52014 GP19677/GN52014	0.12	0.0	mg/kg mg/kg	1.2	1.26 2.48	105.0 103.3	90-110% 90-110%

Associated Samples: Batch GP19677: MC41122-47R, MC41122-49R (*) Outside of QC limits

#### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC41122R Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Cyanide	GP19677/GN52014	MC41122-49R	mg/kg	0.083	0.036	79.0(a)	0-20%

Associated Samples:
Batch GP19677: MC41122-47R, MC41122-49R
(*) Outside of QC limits

- (a) RPD acceptable due to low duplicate and sample concentrations.

#### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC41122R Account: CRACT - GHD Services Inc. Project: Behr, Peoria, IL

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Cyanide	GP19677/GN52014	MC41122-49R	mg/kg	0.083	1.29	1.4	101.8	75-125%

5.3

- Associated Samples:
  Batch GP19677: MC41122-47R, MC41122-49R
  (*) Outside of QC limits
  (N) Matrix Spike Rec. outside of QC limits

# Appendix D 2015 Validation Memorandum



# Memorandum

To: Doug Soutter Ref. No.: 11103179

From: Kathy Shaw/eew/1-NF Date: October 8, 2015

Re: Analytical Results and Reduced Validation

Environmental Remediation
Behr - Peoria / Behr Iron & Metal

Peoria, Illinois August 2015

#### 1. Introduction

This document details a reduced validation of analytical results for soil samples collected in support of the Environmental Remediation at the Behr Peoria site during August 2015. Samples were submitted to Accutest Laboratory located in Marlborough, Massachusetts. A sample collection and analysis summary is presented in Table 1. The validated analytical results are summarized in Table 2. A summary of the analytical methodology is presented in Table 3.

Standard GHD report deliverables were submitted by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody form, finished report forms, method blank data, recovery data from surrogate spikes, laboratory control samples (LCS) and matrix spike (MS) samples.

The QA/QC criteria by which these data have been assessed are outlined in the analytical methods referenced in Table 3 and applicable guidance from the document entitled:

i) "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review", USEPA 540-R-08-01, June 2008.

Item i) will subsequently be referred to as the "Guidelines" in this Memorandum.

# 2. Sample Holding Time and Preservation

The sample holding time criteria and sample preservation requirements for the analyses are summarized in Table 3. Sample chain of custody documents and analytical reports were used to determine sample holding times. All samples were prepared and analyzed within the required holding times.

All samples were properly preserved, delivered on ice, and stored by the laboratory at the required temperature  $(4 + /- 2^{\circ}C)$ .



### 3. Laboratory Method Blank Analyses

Method blanks are prepared from a purified matrix and analyzed with investigative samples to determine the existence and magnitude of sample contamination introduced during the analytical procedures.

For this study, laboratory method blanks were analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

All method blank results were non-detect, indicating that laboratory contamination was not a factor for this investigation.

### 4. Surrogate Spike Recoveries

In accordance with the methods employed, all samples, blanks, and QC samples analyzed for organics are spiked with surrogate compounds prior to sample extraction and/or analysis. Surrogate recoveries provide a means to evaluate the effects of laboratory performance on individual sample matrices.

All samples submitted for polychlorinated biphenyls (PCB) determinations were spiked with the appropriate number of surrogate compounds prior to sample extraction and analysis.

Surrogate recoveries were assessed against laboratory PCB control limits. All surrogate recoveries met the above criteria.

Due to necessary sample dilutions, surrogate recoveries could not be reported for some samples.

# 5. Laboratory Control Sample Analyses

The LCS is prepared and analyzed as samples to assess the analytical efficiencies of the methods employed, independent of sample matrix effects.

For this study, the LCS was analyzed at a minimum frequency of 1 per 20 investigative samples and/or 1 per analytical batch.

The LCS contained all compounds of interest. All LCS recoveries were within the laboratory PCB control limits, demonstrating acceptable analytical accuracy.

#### 6. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analyses

To evaluate the effects of sample matrices on the preparation process, measurement procedures, and accuracy of a particular analysis, samples are spiked with a known concentration(s) of the analyte(s) of concern and analyzed as MS/MSD samples. The RPD between the MS and MSD is used to assess analytical precision. If the original sample concentration is significantly greater than the spike concentration, the recovery is not assessed.

MS/MSD analyses were performed as specified in Table 1. The laboratory performed additional site-specific MS/MSD analyses internally.

11103179Memo-1 2

The MS/MSD samples were spiked with all compounds of interest. All percent recoveries and RPD values were within the laboratory PCB control limits, demonstrating acceptable analytical accuracy and precision.

# 7. Analyte Reporting

The laboratory reported detected results down to the laboratory's method detection limit (MDL) for each analyte. Positive analyte detections less than the reporting limit (RL) but greater than the MDL were qualified as estimated (J) in Table 2 unless qualified otherwise in this memorandum. Non-detect results were presented as non-detect at the RL in Table 2.

Due to the variety of Aroclors present in the samples and the overlapping of patterns or sharing of peaks, some of the hits may be biased high.

Variability in results between the primary and confirmation column was observed for PCB-1248 in sample S-082615-GW-20. The result was qualified as presumed present and estimated to reflect the lack of precision and potential high bias in Table 4.

All soil results were reported on a dry weight basis.

#### 8. Conclusion

Based on the assessment detailed in the foregoing, the data summarized in Tables 2 and 4 are acceptable with the specific qualifications noted herein.

11103179Memo-1 3

#### Table 1

# Sample Collection and Analysis Summary Environmental Remediation Behr-Peoria/Behr Iron & Metal Peoria, Illinois August 2015

### Analysis/Parameter

Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	РСВ	Comments
S-082615-GW-01	1	Soil	08/26/2015	08:49	X	
S-082615-GW-02	2	Soil	08/26/2015	09:04	Χ	
S-082615-GW-03	3	Soil	08/26/2015	09:11	Χ	
S-082615-GW-04	4	Soil	08/26/2015	09:22	X	
S-082615-GW-05	5	Soil	08/26/2015	09:26	Χ	
S-082615-GW-06	6	Soil	08/26/2015	09:40	X	
S-082615-GW-07	7	Soil	08/26/2015	09:58	X	
S-082615-GW-08	8	Soil	08/26/2015	10:02	X	
S-082615-GW-09	9	Soil	08/26/2015	10:08	Χ	
S-082615-GW-10	10	Soil	08/26/2015	10:15	Χ	
S-082615-GW-11	11	Soil	08/26/2015	10:20	Χ	
S-082615-GW-12	12	Soil	08/26/2015	10:23	Χ	
S-082615-GW-13	13	Soil	08/26/2015	10:27	X	
S-082615-GW-14	14	Soil	08/26/2015	10:32	X	MS/MSD
S-082615-GW-15	15	Soil	08/26/2015	10:39	X	
S-082615-GW-16	16	Soil	08/26/2015	10:43	X	
S-082615-GW-17	17	Soil	08/26/2015	10:59	X	
S-082615-GW-18	18	Soil	08/26/2015	11:07	X	
S-082615-GW-19	19	Soil	08/26/2015	11:10	X	MS/MSD
S-082615-GW-20	20	Soil	08/26/2015	11:13	X	
S-082615-GW-21	21	Soil	08/26/2015	11:17	X	
S-082615-GW-22	22	Soil	08/26/2015	11:35	X	MS/MSD
S-082615-GW-23	23	Soil	08/26/2015	11:45	X	
S-082615-GW-24	24	Soil	08/26/2015	12:59	X	
S-082615-GW-25	25	Soil	08/26/2015	13:04	X	
S-082615-GW-26	26	Soil	08/26/2015	13:12	X	
S-082615-GW-27	27	Soil	08/26/2015	13:15	X	
S-082615-GW-28	28	Soil	08/26/2015	13:19	X	
S-082615-GW-29	29	Soil	08/26/2015	13:24	X	
S-082615-GW-30	30	Soil	08/26/2015	13:43	X	
S-082615-GW-31	31	Soil	08/26/2015	13:49	X	
S-082615-GW-32	32	Soil	08/26/2015	13:52	X	
S-082615-GW-33	33	Soil	08/26/2015	14:08	X	
S-082615-GW-34	34	Soil	08/26/2015	14:14	X	
S-082615-GW-35	35	Soil	08/26/2015	14:21	X	MS/MSD
S-082615-GW-36	36	Soil	08/26/2015	14:25	X	
S-082615-GW-37	37	Soil	08/26/2015	14:32	X	
S-082615-GW-38	38	Soil	08/26/2015	14:35	X	
S-082615-GW-39	39	Soil	08/26/2015	14:41	X	

#### Table 1

# Sample Collection and Analysis Summary Environmental Remediation Behr-Peoria/Behr Iron & Metal Peoria, Illinois August 2015

### Analysis/Parameter

				Collection		
Sample Identification	Location	Matrix	Collection Date (mm/dd/yyyy)	Time (hr:min)	PCB	Comments
S-082615-GW-40	40	Soil	08/26/2015	14:48	X	
S-082615-GW-41	41	Soil	08/26/2015	15:08	X	
S-082615-GW-42	42	Soil	08/26/2015	15:11	X	
S-082715-GW-43	43	Soil	08/27/2015	07:36	X	
S-082715-GW-44	44	Soil	08/27/2015	07:44	X	
S-082715-GW-45	45	Soil	08/27/2015	07:48	X	
S-082715-GW-46	46	Soil	08/27/2015	07:52	X	
S-082715-GW-47	47	Soil	08/27/2015	07:56	X	
S-082715-GW-48	48	Soil	08/27/2015	07:59	X	
S-082715-GW-49	49	Soil	08/27/2015	08:04	X	
S-082715-GW-50	50	Soil	08/27/2015	08:08	X	

#### Notes:

PCB - Polychlorinated Biphenyls

MS/MSD - Matrix Spike/Matrix Spike Duplicate

Table 2

Location ID: Sample Name: Sample Date: Depth:		1 S-082615-GW-01 8/26/2015 6 ft above concrete slab	2 S-082615-GW-02 8/26/2015 5 ft above concrete slab	3 S-082615-GW-03 8/26/2015 6 ft above concrete slab	4 S-082615-GW-04 8/26/2015 2 ft above concrete slab	5 S-082615-GW-05 8/26/2015 2 ft above concrete slab
Parameters	Units					
PCBs						
Aroclor-1016 (PCB-1016)	μg/kg	36 U	40 U	36 U	36 U	37 U
Aroclor-1221 (PCB-1221)	μg/kg	36 U	40 U	36 U	36 U	37 U
Aroclor-1232 (PCB-1232)	μg/kg	36 U	40 U	36 U	36 U	37 U
Aroclor-1242 (PCB-1242)	μg/kg	36 U	40 U	36 U	36 U	37 U
Aroclor-1248 (PCB-1248)	μg/kg	6770	42900	15200	12500	11000
Aroclor-1254 (PCB-1254)	μg/kg	10100	38900	13000	14800	15900
Aroclor-1260 (PCB-1260)	μg/kg	2340	3970 J	2620 J	3100 J	3140 J

Table 2

Location ID: Sample Name: Sample Date: Depth:		6 S-082615-GW-06 8/26/2015 1 ft above concrete slab	7 S-082615-GW-07 8/26/2015 6 ft above concrete slab	8 S-082615-GW-08 8/26/2015 6 ft above concrete slab	9 S-082615-GW-09 8/26/2015 6 ft above concrete slab	10 S-082615-GW-10 8/26/2015 6 ft above concrete slab
Parameters	Units					
PCBs						
Aroclor-1016 (PCB-1016)	μg/kg	37 U	35 U	36 U	36 U	36 U
Aroclor-1221 (PCB-1221)	μg/kg	37 U	35 U	36 U	36 U	36 U
Aroclor-1232 (PCB-1232)	μg/kg	37 U	35 U	36 U	36 U	36 U
Aroclor-1242 (PCB-1242)	μg/kg	37 U	35 U	36 U	36 U	36 U
Aroclor-1248 (PCB-1248)	μg/kg	5130	4070	5300	8980	8040
Aroclor-1254 (PCB-1254)	μg/kg	5740	7380	7900	11700	12200
Aroclor-1260 (PCB-1260)	μg/kg	1300	1640	2030	2330	3000

Table 2

Location ID: Sample Name: Sample Date: Depth:		11 S-082615-GW-11 8/26/2015 6 ft above concrete slab	12 S-082615-GW-12 8/26/2015 6 ft above concrete slab	13 S-082615-GW-13 8/26/2015 6 ft above concrete slab	14 S-082615-GW-14 8/26/2015 6 ft above concrete slab	15 S-082615-GW-15 8/26/2015 6 ft above concrete slab
Parameters	Units					
PCBs						
Aroclor-1016 (PCB-1016)	μg/kg	37 U	36 U	35 U	37 U	36 U
Aroclor-1221 (PCB-1221)	μg/kg	37 U	36 U	35 U	37 U	36 U
Aroclor-1232 (PCB-1232)	μg/kg	37 U	36 U	35 U	37 U	36 U
Aroclor-1242 (PCB-1242)	μg/kg	37 U	36 U	35 U	37 U	36 U
Aroclor-1248 (PCB-1248)	μg/kg	3450	2800	7450	16500	8020
Aroclor-1254 (PCB-1254)	μg/kg	4200	3480	12500	19800	11000
Aroclor-1260 (PCB-1260)	μg/kg	1560	1120	3120	3130 J	2650

Table 2

Location ID: Sample Name: Sample Date: Depth:		16 S-082615-GW-16 8/26/2015 6 ft above concrete slab	17 S-082615-GW-17 8/26/2015 6 ft above concrete slab	18 S-082615-GW-18 8/26/2015 6 ft above concrete slab	19 S-082615-GW-19 8/26/2015 6 ft above concrete slab	20 S-082615-GW-20 8/26/2015 6 ft above concrete slab
Parameters	Units					
PCBs						
Aroclor-1016 (PCB-1016)	μg/kg	37 U	36 U	37 U	37 U	37 U
Aroclor-1221 (PCB-1221)	μg/kg	37 U	36 U	37 U	37 U	37 U
Aroclor-1232 (PCB-1232)	μg/kg	37 U	36 U	37 U	37 U	37 U
Aroclor-1242 (PCB-1242)	μg/kg	37 U	36 U	37 U	37 U	37 U
Aroclor-1248 (PCB-1248)	μg/kg	7110	2000	2720	9480	15700 J
Aroclor-1254 (PCB-1254)	μg/kg	13600	4150	4710	13500	17300
Aroclor-1260 (PCB-1260)	μg/kg	4170	1040	1260 J	3140	2250

Table 2

Location ID: Sample Name: Sample Date: Depth:		21 S-082615-GW-21 8/26/2015 6 ft above concrete slab	22 S-082615-GW-22 8/26/2015 1 ft above concrete slab	23 S-082615-GW-23 8/26/2015 1 ft above concrete pad	24 S-082615-GW-24 8/26/2015 6 ft above concrete pad	25 S-082615-GW-25 8/26/2015 6 ft above concrete pad
Parameters	Units					
PCBs						
Aroclor-1016 (PCB-1016)	μg/kg	35 U	37 U	38 U	39 U	36 U
Aroclor-1221 (PCB-1221)	μg/kg	35 U	37 U	38 U	39 U	36 U
Aroclor-1232 (PCB-1232)	μg/kg	35 U	37 U	38 U	39 U	36 U
Aroclor-1242 (PCB-1242)	μg/kg	35 U	37 U	38 U	39 U	36 U
Aroclor-1248 (PCB-1248)	μg/kg	13400	6320	6100	7770	10900
Aroclor-1254 (PCB-1254)	μg/kg	18700	13000	9210	9800	9790
Aroclor-1260 (PCB-1260)	μg/kg	4140	3110	1830	2180	2360

Table 2

Location ID: Sample Name: Sample Date: Depth:		26 S-082615-GW-26 8/26/2015 6 ft above concrete pad	27 S-082615-GW-27 8/26/2015 6 ft above concrete pad	28 S-082615-GW-28 8/26/2015 6 ft above concrete pad	29 S-082615-GW-29 8/26/2015 6 ft above concrete pad	30 S-082615-GW-30 8/26/2015 6 ft above concrete pad
Parameters	Units					
PCBs						
Aroclor-1016 (PCB-1016)	μg/kg	36 U	37 U	36 U	36 U	37 U
Aroclor-1221 (PCB-1221)	μg/kg	36 U	37 U	36 U	36 U	37 U
Aroclor-1232 (PCB-1232)	μg/kg	36 U	37 U	36 U	36 U	37 U
Aroclor-1242 (PCB-1242)	μg/kg	36 U	37 U	36 U	36 U	37 U
Aroclor-1248 (PCB-1248)	μg/kg	10700	11500	7850	13200	11300
Aroclor-1254 (PCB-1254)	μg/kg	14100	13800	12400	17500	15000
Aroclor-1260 (PCB-1260)	μg/kg	3350	2930	2820	4460	2690

Table 2

Location ID: Sample Name: Sample Date: Depth:		31 S-082615-GW-31 8/26/2015 6 ft above concrete pad	32 S-082615-GW-32 8/26/2015 5.5 ft above concrete pad	33 S-082615-GW-33 8/26/2015 1 ft above concrete pad	34 S-082615-GW-34 8/26/2015 1 ft above concrete pad	35 S-082615-GW-35 8/26/2015 6 ft above concrete pad
Parameters	Units					
PCBs						
Aroclor-1016 (PCB-1016)	μg/kg	35 U	38 U	38 U	39 U	36 U
Aroclor-1221 (PCB-1221)	μg/kg	35 U	38 U	38 U	39 U	36 U
Aroclor-1232 (PCB-1232)	μg/kg	35 U	38 U	38 U	39 U	36 U
Aroclor-1242 (PCB-1242)	μg/kg	35 U	38 U	38 U	39 U	36 U
Aroclor-1248 (PCB-1248)	μg/kg	8260	21300	22700	20600	6120
Aroclor-1254 (PCB-1254)	μg/kg	12200	22100	39800	69100	10800
Aroclor-1260 (PCB-1260)	μg/kg	2860	3410	5930	8790	4310

Table 2

Location ID: Sample Name: Sample Date: Depth:		36 S-082615-GW-36 8/26/2015 6 ft above concrete pad	37 S-082615-GW-37 8/26/2015 6 ft above concrete pad	38 S-082615-GW-38 8/26/2015 6 ft above concrete pad	39 S-082615-GW-39 8/26/2015 6 ft above concrete pad	40 S-082615-GW-40 8/26/2015 4.5 ft above concrete pad
Parameters	Units					
PCBs						
Aroclor-1016 (PCB-1016)	μg/kg	37 U	36 U	36 U	40 U	40 U
Aroclor-1221 (PCB-1221)	μg/kg	37 U	36 U	36 U	40 U	40 U
Aroclor-1232 (PCB-1232)	μg/kg	37 U	36 U	36 U	40 U	40 U
Aroclor-1242 (PCB-1242)	μg/kg	37 U	36 U	36 U	40 U	40 U
Aroclor-1248 (PCB-1248)	μg/kg	8540	9560	3560	4100	2100
Aroclor-1254 (PCB-1254)	μg/kg	14100	15400	6230	4200	3470
Aroclor-1260 (PCB-1260)	μg/kg	3010	3590	1640	762	863

Table 2

Location ID: Sample Name: Sample Date: Depth:		41 S-082615-GW-41 8/26/2015 1 ft above concrete pad	42 S-082615-GW-42 8/26/2015 1 ft above concrete pad	43 S-082715-GW-43 8/27/2015 1.5 ft above concrete slab	44 S-082715-GW-44 8/27/2015 6 ft above concrete slab	45 S-082715-GW-45 8/27/2015 6 ft above concrete slab
Parameters	Units					
PCBs						
Aroclor-1016 (PCB-1016)	μg/kg	36 U	36 U	35 U	35 U	41 U
Aroclor-1221 (PCB-1221)	μg/kg	36 U	36 U	35 U	35 U	41 U
Aroclor-1232 (PCB-1232)	μg/kg	36 U	36 U	35 U	35 U	41 U
Aroclor-1242 (PCB-1242)	μg/kg	36 U	36 U	35 U	35 U	41 U
Aroclor-1248 (PCB-1248)	μg/kg	5070	4620	4270	3180	902
Aroclor-1254 (PCB-1254)	μg/kg	8570	7070	7630	5680	1460
Aroclor-1260 (PCB-1260)	μg/kg	2670	1760	1860	1580	322

Table 2

Location ID: Sample Name:		46	47	48	49	50 S-082715-GW-50	
		S-082715-GW-46	S-082715-GW-47	S-082715-GW-48	S-082715-GW-49		
Sample Date:		8/27/2015	8/27/2015	8/27/2015	8/27/2015	8/27/2015	
Depth:		6 ft above concrete slab	6 ft above concrete slab	6 ft above concrete slab	6 ft above concrete slab	6 ft above concrete slab	
Parameters	Units						
PCBs							
Aroclor-1016 (PCB-1016)	μg/kg	42 U	36 U	36 U	36 U	35 U	
Aroclor-1221 (PCB-1221)	μg/kg	42 U	36 U	36 U	36 U	35 U	
Aroclor-1232 (PCB-1232)	μg/kg	42 U	36 U	36 U	36 U	35 U	
Aroclor-1242 (PCB-1242)	μg/kg	42 U	36 U	36 U	36 U	35 U	
Aroclor-1248 (PCB-1248)	μg/kg	1740	8720	10900	4010	4970	
Aroclor-1254 (PCB-1254)	μg/kg	2490	11600	28200	6710	9610	
Aroclor-1260 (PCB-1260)	μg/kg	525	2570	4150	1620	2240	

#### Notes:

PCBs - Polychlorinated Biphenyls

U - Not detected at the associated reporting

J - Estimated concentration

#### Table 3

# Analytical Methods Environmental Remediation Behr-Peoria/Behr Iron & Metal Peoria, Illinois August 2015

				Holding Time		
Parameter	Method	Matrix	Preservation	Collection to Extraction (Days)	Collection or Extraction to Analysis (Days)	
Polychlorinated Biphenyls (PCBs)	SW-846 8082	Soil	Iced, 0-6° C	14	40	

Notes:

Method References:

SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, 1986, with subsequent revisions

#### Table 4

# Qualified Sample Data Due to Differences in Dual Column Results Environmental Remediation Behr-Peoria/Behr Iron & Metal Peoria, Illinois August 2015

Parameter	Analyte	RPD (percent)	Criteria (percent)	Associated Sample ID	Qualified Result	Units
PCB	PCB-1248	> 40	< 40	S-082615-GW-20	15700 J	μg/kg

#### Notes:

RPD - Relative Percent Difference
J - Estimated concentration
PCB - Polychlorinated Biphenyls

Appendix E Resumes of GHD and Tephra Project Personnel

Not Responsive	



Not Responsive	

Not Responsive	

Not Responsive		

Not Responsive		

	Not Responsive	

# Appendix F Certification by the Property Owner and the Party Conducting the Cleanup

# Appendix F

Behr Peoria, Inc. plans to implement a self-implementing cleanup and disposal of stockpiled soil/fill containing polychlorinated biphenyl (PCB) remediation waste at the facility located at 2424 West Clark Street, Peoria, Illinois (Site). The Site has been identified as LPC#: 1430655140 and USEPA ID: ILD065238503.

The owner of the Site, IBS, Inc., and the party conducting the cleanup, Behr Peoria, Inc., hereby certify that all sampling plans, sample collection procedures, sample preparation procedures, extraction procedures, and instrumental/chemical analysis procedures used to assess or characterize the PCB contamination at the cleanup site, are on file electronically at the GHD office located at 6400 Shafer Court, Rosemont, Illinois 60018 (please reference GHD project number 11103179), and are available for EPA inspection.

Leland R. Frecking

IBS Inc.
(property owner)

Walter T. Con W. Theodore Roth, President

Behr Peoria Inc.

(party conducting the cleanup)

Leland R. Foecking, Treasurer



November 18, 2015 Reference No. 11103179

Susan Hedman Region 5 Regional Administrator c/o Jennifer Dodds U.S. Environmental Protection Agency 77 W. Jackson Boulevard, Mail Code LU-9J Chicago, Illinois 60604-3590 VIA EMAIL AND CERTIFIED MAIL

Lisa Bonnett, Director c/o Todd Gross Illinois Environmental Protection Agency Bureau of Land, Division of Remediation Management Remedial Project Management Section 1021 North Grand Avenue East Post Office Box 19276 Springfield, IL 62794-9276

Wil Hayes
Director of Environmental Health
Peoria City/County Health Department
2116 N. Sheridan Road, Peoria, IL 61604

Dear Sirs:

Re: Addendum to the October 22, 2015 Work Plan for Self-Implementing On-Site Cleanup and Disposal of PCB Remediation Waste
Behr Peoria, Inc. Facility, 2424 West Clark Street, Peoria, Peoria County, Illinois
LPC#: 1430655140 and USEPA ID: ILD065238503

GHD Services Inc. (GHD) has prepared this Addendum to the October 22, 2015 Work Plan for Self-Implementing On-Site Cleanup and Disposal of PCB Remediation Waste, Behr Peoria, Inc. Facility, 2424 West Clark Street, Peoria, Peoria County, Illinois (Work Plan) to address issues discussed with the U.S. Environmental Protection Agency (U.S. EPA) project manager Jennifer Dodds during a November 13, 2015 telephone conversation.

This Addendum modifies the "Decontamination of the Concrete Slab and Verification Sampling" section of the Work Plan (Section 4.7.5) and provides for additional actions to be taken if verification sampling exceeds the most stringent cleanup criteria of 1 milligram per kilogram (mg/kg) of polychlorinated biphenyls (PCBs).



# Verification Sampling of the Decontamination of the Concrete Slab

The Work Plan describes the removal of stockpiled soil/fill that is currently located on a concrete slab. Once the soil/fill is removed and the concrete pad is decontaminated, verification sampling of the concrete pad will be performed to determine compliance with remediation objectives.

The verification sampling will be performed on the concrete slab beneath the North Pile, which is the portion which held soil/fill that exhibited PCB concentrations greater than 50 mg/kg.

Composite sampling of the concrete will be performed in accordance with 40 CFR 761.289. Since the Site is a scrapyard, the original source of contamination is unknown, and there is no indication of a single point source, the compositing procedure described in 40 CFR 761.289(b)(1)(i) will be used. This procedure is described as:

"The first procedure is for sites with multiple point sources of contamination (such as an old electrical equipment storage area, a scrap yard, or repair shop) or for unknown sources of contamination. Under this compositing scheme, composite a maximum of nine samples for each type of bulk PCB remediation waste or porous surface at the cleanup site. The maximum dimensions of the area enclosing a nine grid point composite is two grid intervals bounded by three collinear grid points (3.0 meters or approximately 10 feet long). Take all samples in the composite at the same depth. Assure that composite sample areas and individually analyzed samples completely overlay the cleanup site" 40 CFR 761.289(b)(1)(i).

The North Pile concrete pad will be divided into a grid which is composed of rectangles up to 3 meters on a side. A composite sample will be collected from each grid area and will be composed of 9 or fewer subsamples collected at 1 meter intervals. The sample locations are shown on Figure 1.

Composite subsamples will be collected from the cuttings/powder created by advancing a 2.0 to 3.0 cm (0.79 to 1.18 inch) diameter hammer drill through either the full thickness of the concrete slab or 7.5 cm (2.95 inches), whichever is less (i.e., consistent with 40 CFR 761.286). The cuttings/ powder from the 9 subsamples will be mixed together in a stainless steel bowl. After mixing, the composite will be used to fill pre-cleaned laboratory-supplied sample containers. Duplicate samples will be collected at a rate of one duplicate per 20 samples. The samples will be placed in a cooler, chilled with water ice, and sent to the project laboratory via overnight courier along with chain-of-custody records. The samples will be analyzed for PCBs.

# 2. Compliance of the Concrete Slab with Remediation Objectives

The analytical results of the verification sampling of the concrete slab will be used to determine a method for complying with the remediation objectives listed in 40 CFR 761(a)(4)(i).

If the maximum detected PCB concentration from the verification samples is  $\leq 1$  mg/kg, the cleanup will be complete without further conditions (40 CFR 761.61(a)(4)(i)(A)).

11103179Hedman-2 2

If the maximum detected PCB concentration from the verification samples is >1 and ≤25 mg/kg, an environmental notice will be submitted to the Peoria County Recorder of Deeds documenting that the concrete slab area has been used for PCB remediation waste disposal and is restricted to use as a low occupancy area (40 CFR 761.61(a)(8)). Aside from the stockpile sampling efforts, the concrete slab area has not been used for any purpose that required human occupancy for the last five years, which is consistent with a low occupancy area.

If the maximum detected PCB concentration from the verification samples is >25 and ≤50 mg/kg, an environmental notice will be submitted to the Peoria County Recorder of Deeds documenting that the concrete slab area has been used for PCB remediation waste disposal, the requirement to maintain any fence or cap, and the restriction to use as a low occupancy area. One of the following options will be implemented along with the deed notice:

- the slab will secured by a fence and marked with 6x6 inch PCB (ML mark) warning signs (40 CFR 761.61(a)(4)(i)(B)(2)).
- the area will be capped with 6-inches of asphalt or concrete.

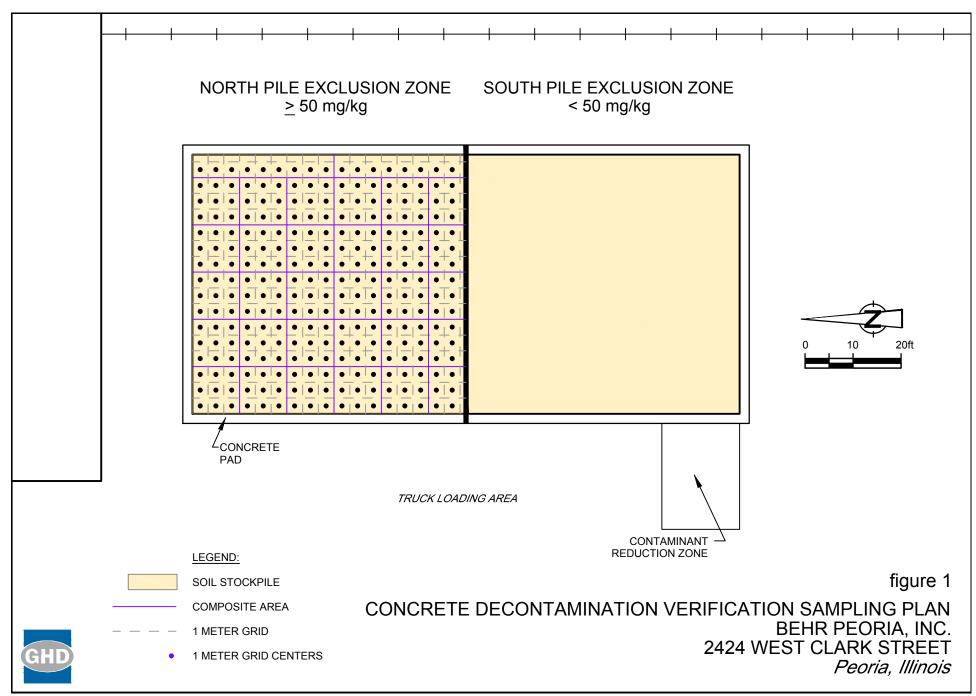
Alternately, if the area identified as exceeding 1 mg/kg PCBs is small, that portion of the slab may be removed for off-Site disposal followed by additional confirmation samples of the underlying soil.

We request a review and written approval of the October 22, 2015 Work Plan as modified by this Addendum by the U.S. EPA. Please let me know if you have any questions or comments regarding this request. I can be reached by phone at 773-380-9731 or by email at douglas.soutter@ghd.com.

Sincerely,

**GHD** 

**Douglas Soutter** 


And A

DS/lg/2

Encl.

cc: Ronald Coupar, Behr Peoria, Inc.
Bernadette Greenwood, Tephra Environmental Compliance

11103179Hedman-2 3

